TI电池保护及电量计方案详解

朱明武 (Mingmo)

2019/06

Battery Management: What problem are we solving?

Battery Charging Products

- Faster & Cooler charging
- High efficiency and Flexibility
- · Highly integrated
- Low power and high power
- Extend battery life & run time

Battery Gauge Products

- Longer run time (15%-20%)
- Maximum Life
- 99% Accuracy (Impedance Track™)
- Reports state of charge & state of health
- High cell count precision AFE & cell balancing
- Primary, secondary & total protection
- Enhanced safety
- Counterfeit batteries & accessories

Battery Automotive Products

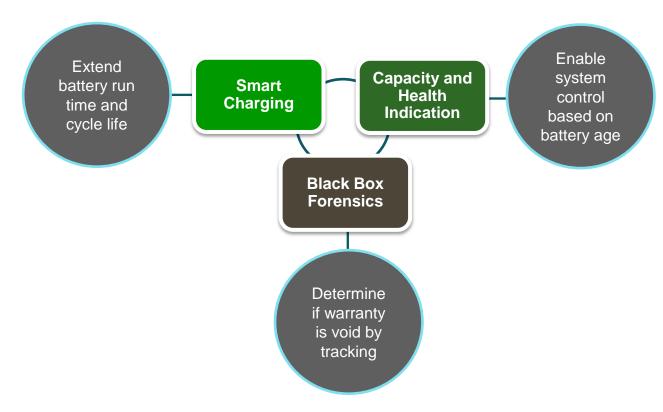
- High cell count precision AFE & cell balancing for automotive applications
- Primary, secondary & total protection
- Enhanced safety

Industry Leader

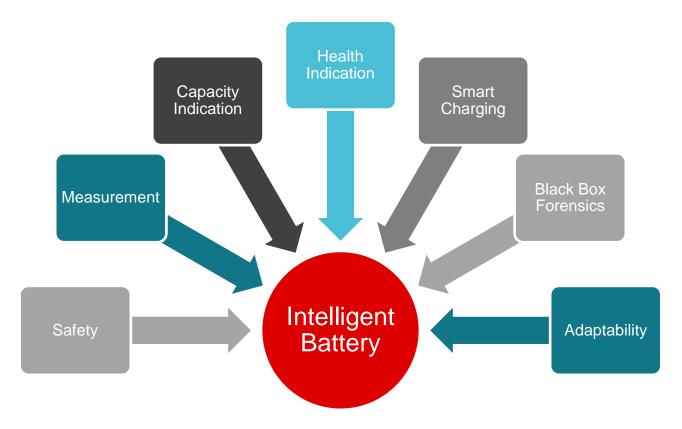
- Wireless Power Standard, ISO26262, Smart Battery Data interface and more
- Impedance Track[™] and CEDV fuel gauging
- Energy Harvesting
- 100's of patents

Committed to Customers

- Investing more R&D in emerging technologies & applications
- 300 battery engineers world wide
- 500 customers trained yearly
- Online Battery Management University


Better user experience

2


Application Reference Design

Why Need A "Intelligent" Battery?

What Makes A Battery "Intelligent"?

Intelligent Battery Pack Solution

2nd protector (OV) BQ2947, 2~4s BQ2961/2, 2~4s with LDO BQ7718, 2~5s, stackable

Protector BQ2970, 1s

BQ2980, 1s, fast charge BQ77905, 3~5s, stackable

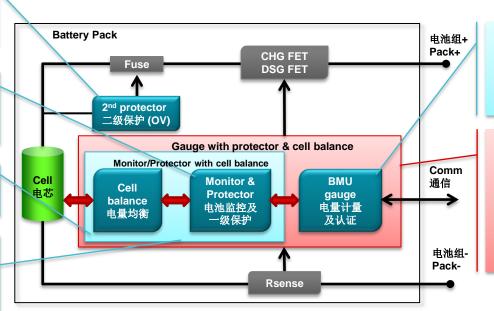
Protector with Cell balance BQ77915, 3~5s, stackable

Monitor with Cell balance

BQ76925, 3~6s BQ76920, 3~5s

BQ76930, 5~10s

BQ76940, 9~15s


BQ76PL536A-Q1, 6s, stackable

BQ76PL455A-Q1, 16s,

stackable

BQ79606-Q1, 3~6s, stackable,

ASIL-D

Standalone gauge BQ27Z561, 1s, IT,Flash,SHA-256,1mΩ BQ27542/6, 1s, IT,Flash,SHA-1 BQ34Z100-G1, 1~ns, IT,Flash,SHA-1

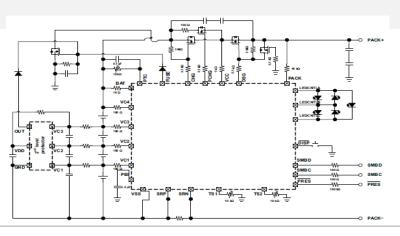
Gauge with protector & cell balance BQ27742, 1s, IT,Flash,SHA-1,CSP BQ27750, 1s, IT,Flash,SHA-1,QFN BQ28Z610, 1~2s, IT,Flash,SHA-1,QFN BQ40Z50-R2, 1~4s, IT,Flash,SHA-1,QFN BQ4050, 1~4s, CEDV,Flash,SHA-1,QFN BQ40Z80, 2~7s, IT,Flash,ECC,QFN

IT:Impendance Track Gauge Algorithm(高精度) CEDV:Compensated EDV Gauge Algorithm AFE:Analog Front End CB: Cells balancing SHA-1/SHA-256/ECC 均为安全算法 QFN/CSP/SON/TSSOP/QFP 均为封装类型 -Q1 汽车级

BQ40z50-R2/-R3

1S – 4S SBS 1.1–Compliant Gas Gauge and Protector

Features


- Integrated AFE Safety Protector
 - Programmable
 - Voltage, Current, Temperature, Cell Imbalance
- Advanced IT gauging with JEITA & additional temp and current sub-ranges & cell balancing at rest or while charging
- Turbo Mode Data Support
- Black box recorder
- N-channel FET drive
- Integrated 1.8v LDO
- SHA-1 Authentication
- LED (up to 5) support option (bq40z50)
- 4mm x 4mm x 0.9mm 32L-QFN

Applications

- Notebook/Netbook PCs
- Medical and Test Equipment
- Portable robotics
- Portable Instruments
- Drones
- Cordless household appliances
- Compatible 2nd Level Protectors: <u>bq2961/2</u>, <u>bq2947</u>, <u>bq2945</u>

Benefits

- High gauging accuracy & multiple complex charging profile support
- Provides comprehensive protection for multicell safety
- Continuous cell balancing ensures maximum battery capacity is available at all times
- Turbo mode reports maximum power available at any time
- Lifetime/Blackbox supports analysis of returned battery packs
- Reduce BOM count/Lower BOM cost
- Anti–counterfeiting
- Visual display of SOC with LED indication

Safety Features - Protection

1. BQ40Z50 Protection (20 items)

- -- notify host, turn off C-FET/D-FET
- Voltages
 - Cell Under Voltage I*R Compensated
 - Cell Under Voltage
 - Cell Over Voltage Temperature Compensated
- Current
 - Short Circuit in Charge
 - Over Current in Charge
 - Short Circuit in Discharge
 - Overload in Discharge
 - Over Current in Discharge
- Temperature
 - FET Over Temperature
 - Cell Over Temperature in Charge / Discharge
 - Cell Under Temperature in Charge / Discharge

- System
 - Host SBS Watchdog timeout
- Charging
 - Pre-Charge Timeout
 - Fast-Charge Timeout
 - Charger Over Current / voltage
 - Pre-charge Over Current
 - Charger Over Capacity

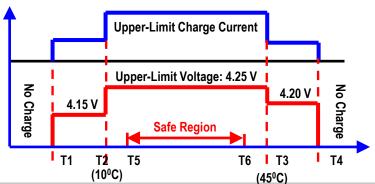
^{*}Each items can be enable or disenable individually in DF Settings subclass

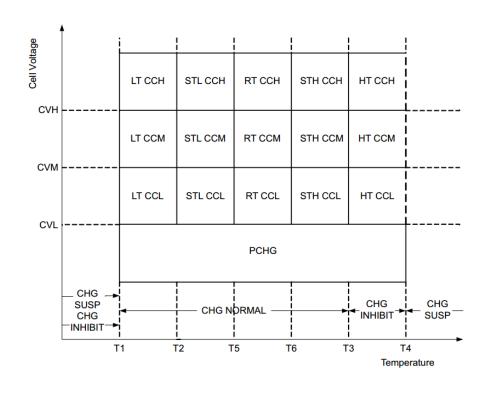
Safety Features - Permanent Fails

2. BQ40Z50 Permanent Fails (23 items)

- -- notify host, turn off C-FET/D-FET, blow FUSE.
- Voltages
 - Cell Under Voltage
 - Cell Over Voltage
- Current
 - Overcurrent in Charge
 - Overcurrent in Discharge
- Temperature
 - FET Over Temperature
 - Cell Over Temperature
 - PTC (hardware)

- Cells
 - Parallel cell connection (Qmax Imbalance)
 - Internal short (Cell Impedance, Copper deposition)
 - Capacity Degradation
 - Cell Balancing
 - Voltage Imbalance at Rest
 - Voltage Imbalance Active
- System
 - Open Thermistor
 - FUSE fail
 - CHG / DSG FET fail
 - AFE Register
 - AFE Communication
 - External 2nd Level OV protection
 - Memory DF/IF failure
 - Manual Permanent Failure (-R3 new)

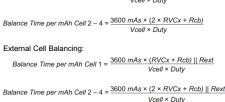

Advanced Charging Algorithm

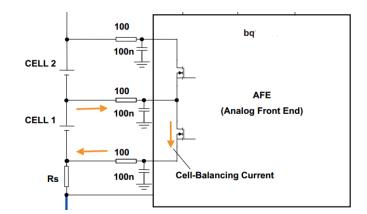

BQ40Z50 <Smart Charging>

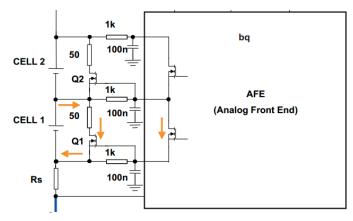
- JEITA
- Fast and safe charge (charging voltage & charging current depending on 7 temp ranges, 4 voltage ranges)
- · Charge loss compensation
- Charge Voltage Compensation for System Impedance

Enhanced Battery Life

- Rate of change in charge voltage/current
- Cell Swelling Control (via Charging Voltage Degradation)
- Option to set charging current in C-Rate
- Cell Balancing at rest
- Cell Balancing at charge

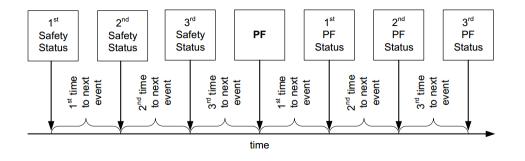



10


Cell Balancing

- Passive VS. Active
 - Passive cell balancing → Resistor bleeding. (BQ40Z50)
 - Active cell balancing → Inductive Charge shuttling.(EMB1499+EMB1428)
- Internal VS. External
 - Internal cell balance → use integrated FET. (BQ40Z50)
 - External cell balance → add external FETs. (BQ40Z50)
- Voltage based VS. SOC based
 - Voltage based → the symptoms. simply to implement, however are affected by impedance deviations and have lower balancing rate. (BQ4050)
 - SOC based → the root. achieve best balancing accuracy and rate, but have to relay on already existing framework of SOC measurement. (BQ40Z50)
- Cell balance current
 - -I=V/R

Internal Cell Balancing: $3600 \text{ mAs} \times (RVCx + Rcb)$ Balance Time per mAh Cell 1 $_{2}$ 3600 mAs \times (2 \times RVCx + Rcb) Balance Time per mAh Cell 2 - 4 Vcell × Duty External Cell Balancing:


Lifetime Data & Black Box

1. BQ40Z50 Lifetime

- Voltage (Max, Min, delta)
- Current (Max)
- Temperature (Max, Min, delta)
- · Charging Events
 - Number of valid Charge Terminations
 - Last Charge Termination
- Gauging Events
 - Number of QMAX updates
 - Last QMAX update
 - Number of RA updates
 - Last RA update
- Power Events
 - Number of Resets, Shutdowns
- Cell Balancing
 - Cell Balancing Time each Cell
- Safety Events
 - Number of Safety Events
 - Last Safety Event
- Time
 - Time spent in different RelativeStateOfCharge() Temperature() ranges
 8 RSOC * 7 Temp = 56 ranges
 - Total FW runtime

2. BQ40Z50 Black Box Recorder

- PF scene image
- last three SafetyStatus()
- first three updates of PFStatus()

Security Authentication

- Need for Battery Authentication
- After-market and counterfeit batteries present a host of problems:
 - Discharge rate cell mismatch
 - Charger Chemistry mismatch
 - Short circuit, over voltage, under voltage protection
 - Unknown cell quality
- Authentication ensures that connected devices fulfill the established requirements and are safe for the consumer!

- Authentication Methods
- Mechanical fit
 - Easily duplicated
- Resistor ID
 - Measure voltage drop across resistor internal to the battery on extra pin
 - Also easily duplicated
- EEPROM ID number
- Encrypted Handshake with Secret Key
 - SHA-1, SHA-256, ECC

Gauging

BQ40Z50 < Measurement>

- 16-bit ADC for each cell voltages and temperature
- 16-bit Coulomb Counter for current
- Voltage and Current sample simultaneous

BQ40Z50 < Capacity Indication>

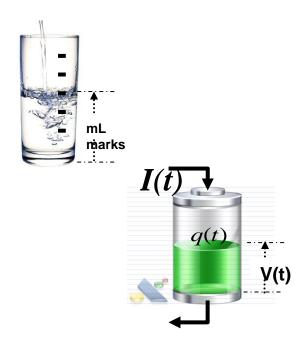
- · Impedance Track algorithm,
- Predict the future
 - SOC, RM, FCC
 - Time to Full
 - Time to Empty
- Turbo Mode
- Fast Qmax Update
- Battery Trip Point
- IATA

BQ40Z50 < Health Indication >

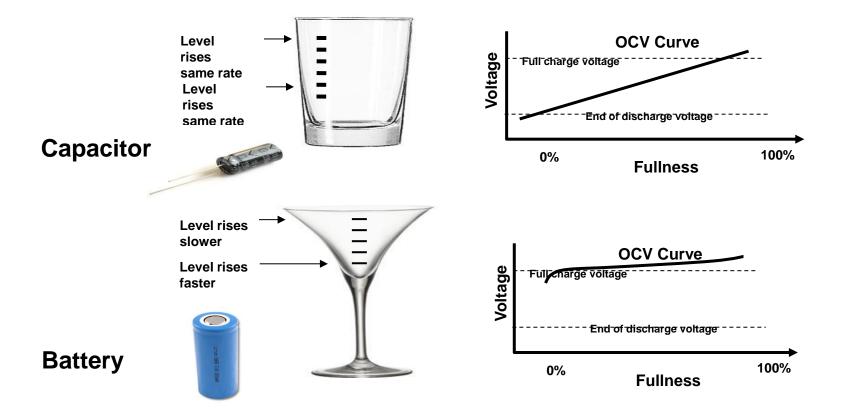
- SOH
- Cycle Count

Run Time 6:27 730 mAh 2701 mWh

How to estimate battery capacity?


- Measure change in capacity
 - Voltage lookup
 - Coulomb counting

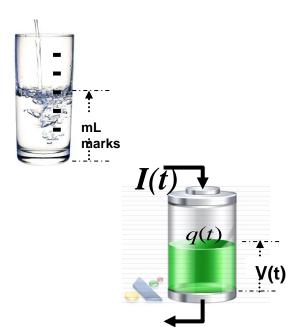
- Develop a cell model
 - Circuit model
 - Table Lookup



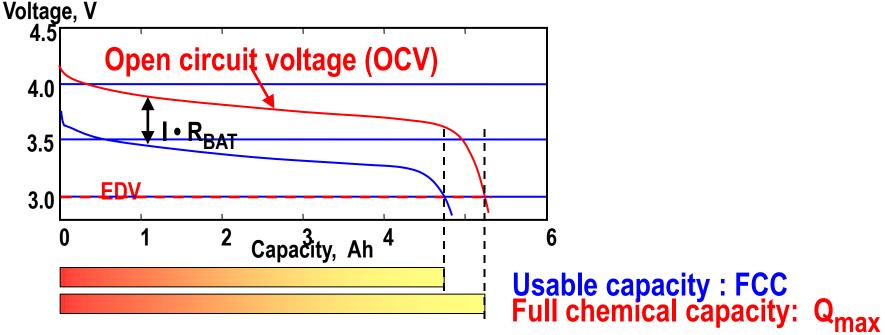
Voltage lookup

- One can tell how much water is in a glass by reading the water level
 - Accurate water level reading should only be made after the water settles (no ripple, etc)
- One can tell how much charge is in a battery by reading wellrested cell voltage
 - Accurate voltage should only be made after the battery is well rested (stops charging or discharging)

OCV curve

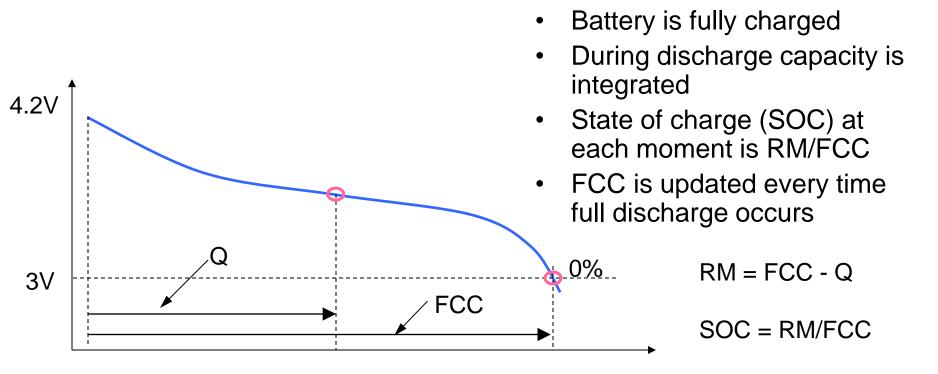

Current integration

- One can also measure how much water goes in and out
- In batteries, battery capacity changes can be monitored by tracking the amount of electrical charges going in/out


$$q(t) = q_0 + \int I(t) \cdot dt$$
$$q_k = q_0 + \Delta t \cdot \sum_k I_k$$

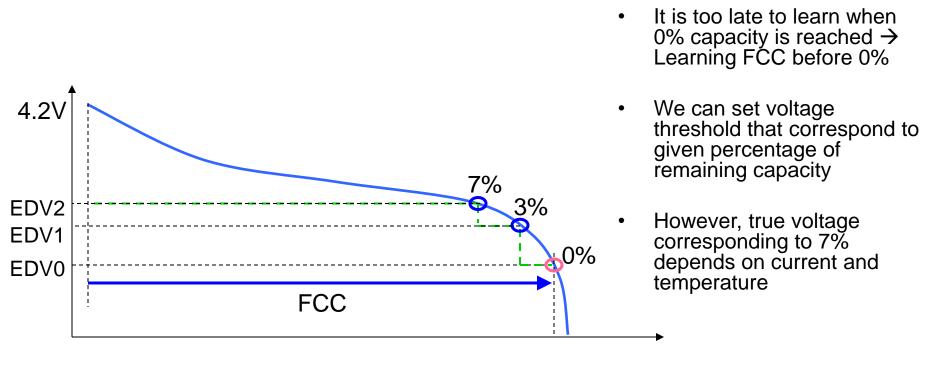
$$q_k = q_0 + \Delta t \cdot \sum_k I_k$$

- But how do you know the amount of charge, q_0 , already in the battery at the start?
- How do you count charges accurately?


How Much Capacity is Really Available?

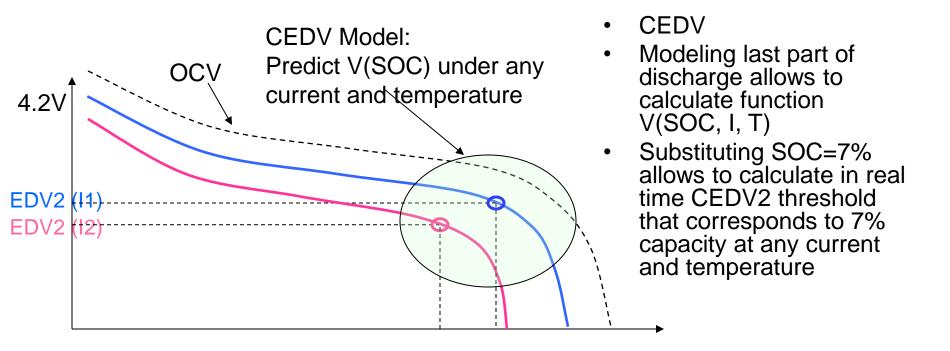
- External battery voltage (blue curve) V = V_{0CV} I R_{BAT}
- Higher C-rate →EDV is reached earlier (higher I R_{BAT})

Current Integration Based Fuel-gauging

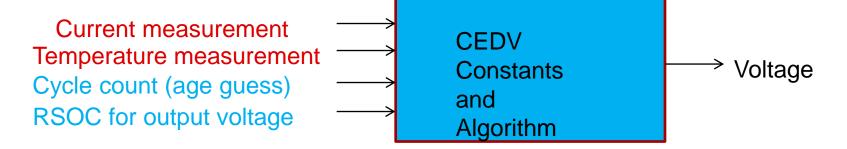

Gauging Algorithm Options

- Impedance Track (IT)
 - Consumer/Industrial/Medical applications, increased gauging accuracy.
- Compensated-End-of-Discharge (CEDV)
 - Industrial applications with highly pulsed loads, applications that do not allow rest periods.
- End-of-Service (EOS)
 - Rarely discharged applications, Li-primary cells.

COMPENSATED-END-OF-DISCHARGE (CEDV)


Learning Before Fully Discharged

fixed voltage thresholds



Learning before fully discharged

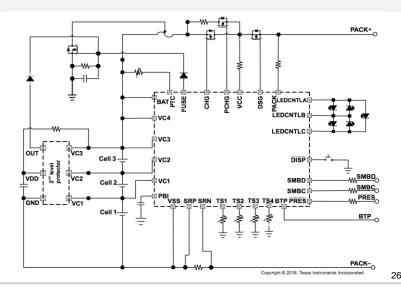
with current and temperature compensation

CEDV Summary

The seven constants describe:

- OCV curve shape
- Temperature effect on OCV
- Resistance
- Temperature effect on resistance
- Low temperature effects
- Aging properties
- Reserve capacity

BQ4050


1S – 4S CEDV Fuel Gauge for Li-lon Packs

Features

- High-Side Protection N-CH FET Drive Allows Serial Bus Communication During Fault Conditions
- · Cell Balancing with Internal Bypass Optimizes Battery Health
- Diagnostic Lifetime Data Monitor and Black Box Recorder for Failure Analysis
- Full Array of Programmable Protection Features Voltage, Current, Temperature
- JEITA Charge Algorithms Support Smart Charging
- Analog Front End with Two Independent ADCs
 - Simultaneous Current and Voltage Sampling
 - High-Accuracy Coulomb Counter with Input Offset Error < 1 µV (Typical)
- Supports Battery Trip Point (BTP) Function for Windows® Integration
- LED Display for State of Charge and Battery Status Indication
- 100-KHz SMBus v1.1 Communications Interface for Programming and Data Access with Alternate 400-KHz Mode
- SHA-1 Authentication
- Compact 32-pin VQFN Package (RSM)

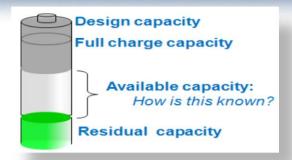
Applications

- Notebook/Netbook PCs
- Medical and Test Equipment
- Portable Instruments

IMPEDANCE TRACK (IT)

Fuel Gauging – Impedance Track[™]

Cell Voltage Measurement


- Measures cell voltage
- Advantage: Simple
- Not accurate over load conditions

Coulomb Counting

- Measures and integrates current over time
- Affected by cell impedance
- Affected by cell self discharge
- Standby current
- Cell Aging
- Must have full to empty learning cycles
- Must develop cell models that will vary with cell maker
- Can count the charge leaving the battery, but won't know remaining charge without complex models
- Models will become less accurate with age

Impedance Track™

- Directly measures effect of discharge rate, temp, age and other factors by learning cell impedance
- Calculates effect on remaining capacity and full charge capacity
- No learning cycles needed
- No host algorithms or calculations

What is Impedance Track?

1. Chemistry table in Data Flash:

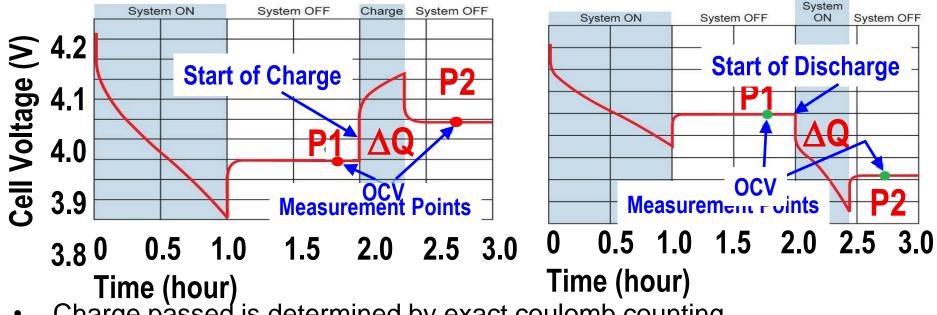
$$OCV = f (dod)$$

 $dod = g (OCV)$

2. <u>Impedance learning</u> during discharge:

$$R = \frac{OCV - V}{I}$$

3. Update Max Chemical Capacity for each cell


4. Run periodic <u>simulations</u> to update predictions of Remaining and Full Capacity

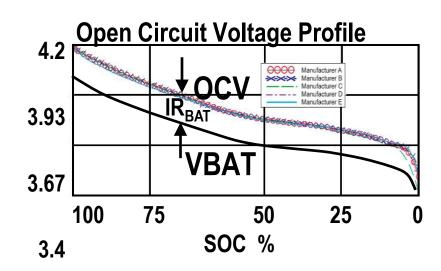
Definitions (part 1)

- OCV open circuit voltage
 - relaxed or predicted voltage with no load
- DOD depth of discharge
 - 0% is charged to the brim, 100% is completely empty of energy
 - Does not depend on load or temperature or system characteristics
- RM Remaining Capacity in mAh
 - Usable capacity of the battery from current DOD to empty
- FCC Full Charge Capacity in mAh
 - Usable capacity of the battery from full to empty
- SOC state of charge, 0% 100%
 - Full and empty points depend on the system
 - Can change with load and temperature
 - -SOC = RM/FCC

Qmax updating

- Charge passed is determined by exact coulomb counting
- SOC1 and SOC2 measured by its OCV

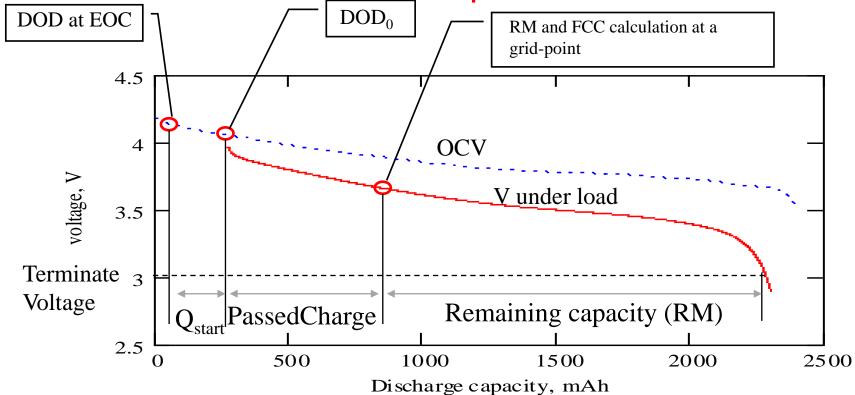
Method works for both charge or discharge exposure

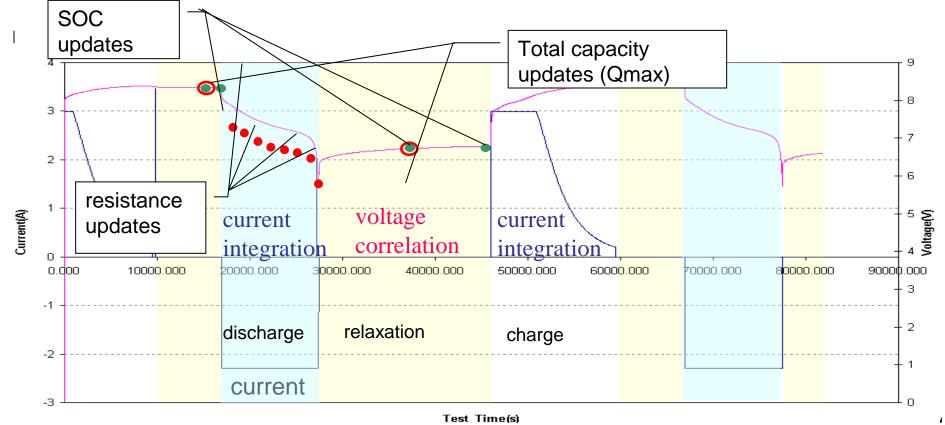


Measuring resistance

- Data flash contains a fixed table: OCV = f (SOC, T)
- IT algorithm: Real-time measurements and calculations during charge and discharge.

$$R_{BAT} = \frac{OCV - V_{BAT}}{I_{AVG}}$$


$$V = OCV(T,SOC) - I*R(T,SOC, Aging)$$


Definitions (part 2)

- DOD0
 - last DOD point measured directly by the gauge
- DODatEOC
 - DOD at End of Charge representing SOC = 100% for a particular system
- Qstart
 - capacity between DODatEOC and DOD0
- Qpass
 - accumulated passed charge since last DOD0 update
- Terminate Voltage
 - voltage at which the system can no longer operate; target for SOC = 0%
- Taper Current
 - Current level at which charger shuts off

Simulation to find RemCap and FCC

Combination of integration and correlation

BQ27Z561

Single Cell Fuel Gauge for Fast Charging

Features

- Battery Fuel Gauge for 1 S Li-Ion applications
 - Supports Rsense down to 1 mΩ
 - <10uA sleep mode with gauging capabilities
 - Support for simultaneous current and voltage Sampling
 - Internal or external temperature sensor
 - SHA-2/HMAC Authentication
 - Lifetime Data Logging when used on pack side
- Lower voltage operation down to 2 V
- Battery Fuel Gauging based on patented Impedance Track™ Technology
 - Models Battery Discharge Curve for Accurate Time-To-Empty Predictions
 - Automatically Adjusts for Battery Aging, Battery Self-Discharge, and Temperature/Rate Inefficiencies
- HDQ and I²C communication with Host System
- Small 12 ball 1.67 mm x 2.05 mm WCSP

Applications

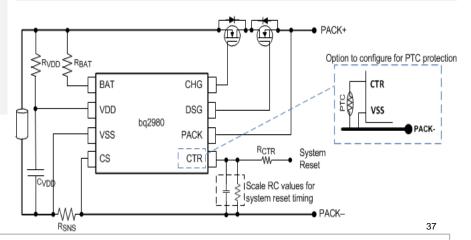
- Smartphones
- Digital Still and Video Cameras
- Tablet Computing
- Portable and Wearable Devices
- Portable Audio Devices

Benefits

- Fully configurable gauge for maximum accuracy/performance
- Host relived of charge/gauge coordination overhead
- Large scratchpad enables manufacturer information storage
- Lifetime data log record supports warranty claim verification
- HDQ interface saves on connector cost with 1 wire comm.
- SHA-2/HMAC authenticates only legitimate packs

BQ2980

1S High Side Protector with Ext. Sense R for Fast Charging


单节支持 1mΩ 检流电阻的快充保护芯片; 高边开关控制的快充保护芯片

Features

- · High side FET driver with built-in charge pump, reduce FET Rsson
- Current sensing via external Rs (down to 1mΩ)
- · High accuracy on current detection
 - +/-1mV @ <20mV range current detection accuracy across temp
- Support the newest 4.4V cell OVP protection
- Low power consumption: 4uA typ
- · Protections incl. OV, UV, OCC, OCD, SCD, OT
 - **OV:** 3.75V to 4.8V (50mV step)
 - **UV:** 2.0V to 3.0V (100mV step)
 - OCC: 6mV to 64mV (2mV step)
 - **OCD**: 6mV to 64mV (2mV step)
 - SCD: 10/20/30/40/60/120mV/200mV
 - Internal OT: 70°C, 80°C, 90°C, 100°C and/or external PTC via CTR pin
- · FET driver override allows system POR initiated by host
- Package: 8ld X2QFN (1.5 x 1.5 x 0.37)

Benefits

- Improve thermal performance by reducing hot spot power dissipation by driving FET Rdson to its lowest range
- Support down to $1m\Omega$ Rs with fine threshold step option
 - · Reduce hot spot power dissipation
 - · Easy to share Rs with pack side gauge
- System reset pin allow host uC to force system POR via open & close power FETs
- Over-temperature protection via internal temperature sensor or external PTC

Portable/Wearable Audio battery pack

- Portable audio speakers
 - Accurate state of charge under dynamic audio loads.
 - Extend run-time.
 - Safety.
- TWS charging case and headphone
 - Extend run-time.
 - Safety.
 - Small size.
 - Accurate state of charge.

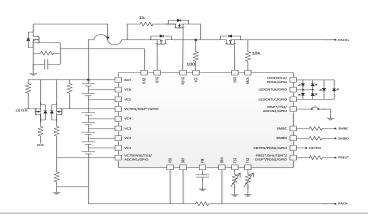
- Solution (BQ40Z50, BQ28Z610, BQ27Z561, BQ27426, BQ2980)
 - Impedance Track gauging algorithm to achieve accurate SOC.
 - With accurate SOC, charge more full and discharge more empty, to extend run-time.
 - Advanced charge algorithm to achieve fast & safe charge.
 - With accurate voltage and current sensing, system can do more safety strategy.
 - For multi-cell, smart cell balance is integrated.

	BQ27Z561	BQ27426	BQ28Z610	BQ40Z50	
Size (mm)	1.72 x 2.09	1.62 x 1.58	4 x 2.5	4 x 4	
Current consumption (uA)	Nml 60 / Slp 11/ DSlp 9 / Off 0.5	Nml 50 / Slp 9 / SD 0.6	Nml 250 / Slp 100 / SD 0.5	Nml 336 / Slp 75/52 / SD 1.6	

BQ40z80

2S – 7S Battery Gas Gauge with Protector

Features


- Battery Manager with 2-Series to 7-Series Capability
- Advanced Impedance Track Gauging with JEITA Charge Control and Cell Balancing During Charge or at Rest
- Suitable for Li-Ion, LiFePO4 and NiXX Chemistries
- Integrated Safety Protector with High-side NMOS FET Drivers
 - Voltage, Current, Temperature, Cell Imbalance
- LED Support (up to 6)
- Pre-charge and Pre-discharge Modes Included
- Integrated Flash Memory and Lifetime/Blackbox Support
- Elliptic Curve Cryptography (ECC) Authentication
- Precision Analog Front End with Two Independent ADCs
- High-Resolution, 16-Bit Coulomb Counter
- 15-Bit Delta-Sigma ADC with Multiplexer
- Support for Simultaneous CC and ADC
- QFN 32pin Package (4mm x 4 mm x 0.9mm)

Applications

- UPS, Backup, and Energy Storage Systems
- Cordless Appliances
- Non-Military Drones
- Portable Robotics
- Compatible 2nd Level Protectors: <u>bq7718</u>, <u>bq7716</u>

Benefits

- High gauging accuracy & multiple complex charging profile support
- Provides comprehensive protection for multicell safety
- Continuous cell balancing ensures maximum battery capacity is available at all times
- Lifetime/Blackbox supports analysis of returned battery packs
- Anti–counterfeiting
- Visual display of SOC with LED indication

BQ40z80 functions

Gauging

- Impedance Track Gas Gauging
- Scaling for higher current
- Support for up to 32V stack voltage (35V abs max)
- Support for 1mΩ sense resistor

Flexible I/O

- Up to 4 TS inputs
- ADC Inputs
- /DISP
- /PRES
- GPIO
- PDSG
- LED Pins
- CB7EN

Authentication

 Elliptic Curve Cryptography (ECC) or SHA-1

GPIO INT Modes

- Battery Mode
- Battery Status
- Charging Status
- Temp Status
- Gauging Status
- IT Status
- Safety Status
- PF Status

Charging

- JEITA-based Charging OR
 Dynamic Charge Adjustment
 Based on Cycle Count or State
 of Health
- SMBus Broadcast to a Smart Charger

Protection

- Voltage, Current, Temperature, and Cell Imbalance
- High-Side NFET Drivers
- · Fuse Drive Capability
- Pre-charge and Predischarge Modes Included

Calibration

- CELL Gain
- VC6-VSS Gain
- PACK Gain
 - 7th CELL Gain

Logging

- Lifetime Data
- BlackBox Functionality

BQ7718

Ultra Low Power Over-voltage Protector for 2S – 5S+

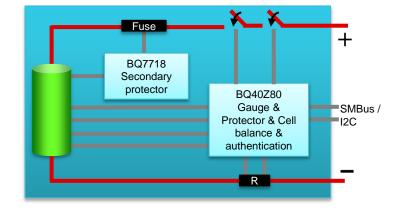
Features

- 2S to 5S Over-voltage (OV) Protection Device
- Supports 20S or more battery packs thru external components interface
 - TIDA-00108
- Low power consumption (1 µA typical, 2uA max)
- TI-programmable output drive for Fuse Blow secondary protection
- TI-programmed (EEPROM) contact TI for specific configurations

Benefits

- Cost-effective for any pack size
- Add Redundant OV Protection easily by stacking bq7718
- Reduced customer production time due to TI programmed EEPROM

Applications


- Power tools and garden tools
- · Handheld vacuum cleaner
- Robotic Cleaner
- Robotic Lawnmower
- eBike and eScooter
- UPS and Energy Storage
- Drones

Vacuum/Robot battery pack

- Protection is a big topic in vacuum cleaners since it is an indoor appliance
 - Built in HW / FW protection
 - Equipped with fuse blow capability for 2nd level protection or permanent failure
 - Cell balancing, with built in cell balancing algorithm
- Since a vacuum cleaning robot / stick is already on the wall adapter li-ion battery will degrade if left at 100% for the majority of time.
 - Impedance Track algorithm
 - Charging Algorithm that enables gauge to control a smart charger (i.e. JEITA)
- Single Chip solution from 2S up to 7S
- LED driving up to 6
- Multi purpose pins
- Multiple ADC inputs and / or Thermistor inputs
- High side NFET driving to maintain communication with the system and the battery

E-bike battery pack

Extend runtime and life cycle

- Ensure the battery running at comfortable situations to extend battery life cycle #
- Accurate capacity info allows users to ride the e-bike longer without the concerns of damage to the battery

Minimize the system current consumption, especially at standby and shipping mode

- Enable longer storage time before sold to end users
- Extend the idle & runtime

System robustness

 Over voltage protection, under voltage protection, discharge over current protection, short circuit protection, over temperature protection.

13S 48V Li-ion Battery Pack Reference Design

http://www.ti.com/tool/tida-010030

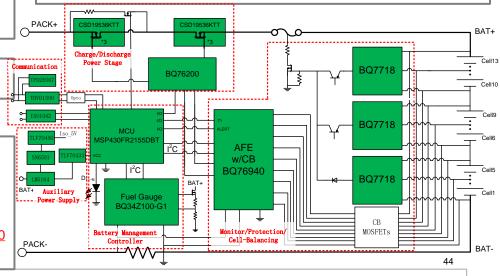
Features

- Impedance Track[™] based gauging solution: with 2% SOC accuracy @room temperature.
- Robust and programmable protection, including:
 - cell over voltage, cell under voltage, overcurrent discharge, short circuit.
 - over temperature, under temperature.
- System current spec: 9mA @operation mode, 50uA @standby, 5uA @shipping mode
- High-side charge/discharge MOSFETs and supports pre-discharge
- Supports 100mA cell-balancing
- Add-on secondary protection

Target Applications

- Battery pack e-bike/e-scooter/LEV
- Other industrial battery pack (>=10S)

Tools & Resources


Board Image

- TIDA-010030 and Tools Folder
- Design Guide
- Design Files: Schematics, PCB, BOM, Gerber
- · Device Datasheets:
 - BQ34Z100-G1, BQ76940, BQ76200, BQ7718
 - MSP430FR2155, LM5164, ISO1042, THVD1500
 - <u>SN6501, TLV704, CSD19536, TPD2E007</u>

Benefits

- IT gauge accuracy can update even not full discharge
- Longer runtime per each charge
- Longer storage time & idle time
- Robust systems. And hardware OV/UV/OCD/SCD
- High side charge and discharge control
- Cell balancing

BMS-BGP Industrial Reference Designs

Key Apps	Title	TI Designs #	BMS Content
LEV eScooters ESS	Industrial Battery Management Module for 20S applications Reference Design	TIDA-01093	bq76930 (x2)
Power ToolsGarden ToolsVacuumsESS	Stacked Overvoltage Protector Solution with bq7718	TIDA-00108	bq7718 (x2)
• 36-48V ESS • eBike/eScooter	Complete Battery Management for 36-48V Systems	TIDA-00792	bq76940, bq76200, bq78350-R1
 Power Tool Garden Tool Robotics/Drones Cordless Vacuum eBike 36V ESS 	10-Cell (36V) Power Tool BMS with Monitoring, Balancing and Protection	TIDA-00449	bq76930
48V ESS eBike/eScooter	15-Cell Battery Controller Analog Front End	TIDA-00255	bq76940
eBike/eScooter	Accurate gauging & 50mA standby current 13S 48V Liion Battery Pack Reference Design	TIDA-010030	bq76940, bq7718, bq34z100, bq76200

BMS resource

http://www.ti.com.cn/battery

BMS University

Videos

Datasheets

Samples & **EVM**

TI Designs

E₂E

Featured products 应用 参考设计 工具与软件 技术文档 支持与培训

电池管理解决方案

进一步发挥电池的潜力

借助 TI电池管理解决方案、工具和专业技术,工程师们可更轻松地设计效率更高、使用寿命更长、更可靠的电池供电型 应用。

充电速度更快且发 热更少的电池充电

准确的电池电量监 测计和监控 IC

准确且实时的电压、电流和

精确保护和安全认 证IC

为了检测各种故障情况,以

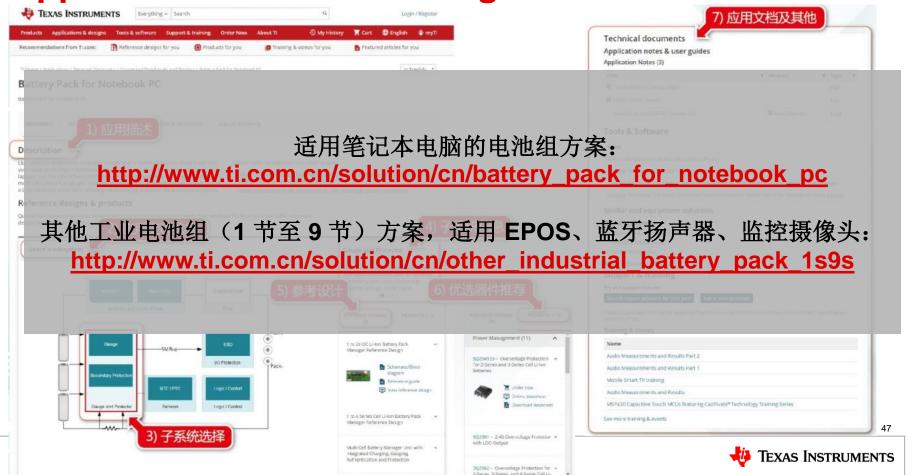
应用

选择您的应用, 查看最适合 您的终端设备的电池管理解

Datasheet (1)

Title	Туре	Size (KB)	Date
bq40z50-R2 1-Series, 2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager datasheet (Rev. A)	PDF	2548	09 Oct 2017

User guides (3)


Title	Туре	Size (KB)	Date
▶ bq40z50-R2 Technical Reference Manual (Rev. B)	PDF	1553	12 Oct 2018
▶ bq40z50-R2 v2.08 Required Changes	PDF	17	11 Oct 2017
bq40z50EVM Li-lon Battery Pack Manager Evaluation Module (Rev. B)	PDF	789	20 Sep 2016

Software (4)

Name	Par	rt#	‡	Type •
Bq40z50-R3 Gauging Embedded Firmware v3.09 (ZIP 4261 KB) 25 Feb 2019				
bq40z50-R2 Gauging Embedded Firmware v2.08 (Rev. A) (ZIP 4249 KB) 11 Sep 2018				
bq40z50-R2 Gauging Embedded Firmware v2.11 (ZIP 4243 KB) 09 Feb 2018				
Gauging Parameter Calculator: Match chemistry for Impedance Track gauges	GP	CCHE	M	Application Software & Frameworks

Application Reference Design

Q&A

Thank you!

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated