ENHANCE PERFORMANCE AND FLEXIBILITY WHILE PROVIDING ADDITIONAL I/O'S AND FASTER SPEEDS WITH OUR NEWEST I2C/I3C DEVICES

New Product Update

Rosemary Sanchez

- Product Marketing Engineer Tyler Townsend
- Applications Engineer

Agenda

- TI I2C/I3C hero and new devices overview
- TCAL Agile I/O Expander overview and applications
- TCA39416 (I2C/I3C translator) I2C vs I3C enhancements
 - and low voltage applications

TI | I2C portfolio overview

Level shifters, Buffers & Hubs

Overview

- Strengthen your I2C bus signal and resolve voltage mismatch
- Buffering translators
- Translators
- FM, FM+ support

Hero Products

- PCA9306/Q1
- TCA9517A/Q1
- TCA9511A
- TCA9617A
- TCA4307

Applications

- · Servers, Enterprise SSD
- Routers (Telecom Switching Equipment)
- I2C, SMBus, PMBus, MDIO, UART, lowspeed SDIO, GPIO, and other two-signal interfaces
- Factory Automation
- · Automotive HUD, Clusters, ADAS

IO Expanders

Overview

- Increase the number of available I2C I/O pins
- 4-, 8-, 16-, 24-bit
- · Level translating expanders
- · Open drain, push-pull I/Os
- · I2C based key pad scanners and LED drivers

Hero Products

- TCA9555
- TCA6507
- TCA6408A/Q1
 TCA6416A
- TCA9539/Q1

Applications

- · Servers, Enterprise SSD
- · Routers (Telecom Switching Equipment)
- PC & Notebooks
- · Mobile Phones
- Factory Automation
- · Automotive Infotainment / BCM

Switches & Muxes

Overview

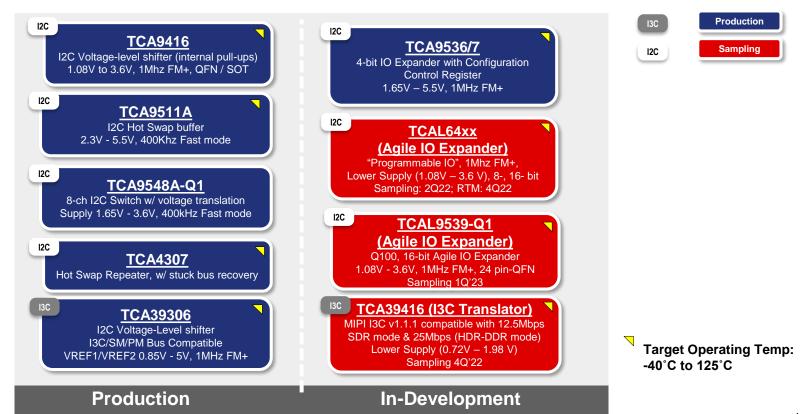
- Expand the capability of your control system by switching between I2C buses.
- 1:2, 1:4, 1:8
- · Level translating switches
- · Cascaded interrupts

Hero Products

TCA9546A

- TCA9543A
- TCA9548A/Q1
- TCA9545A

Applications


- · Servers, Enterprise SSD
- Routers (Telecom Switching Equipment)
- · Factory Automation
- Products With I2C Slave Address Conflicts (Ex: Multiple Sensors))
- Automotive Infotainment / BCM

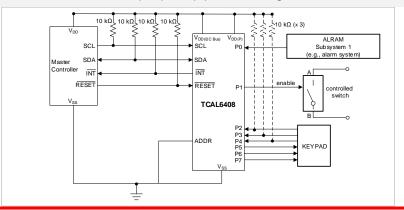
Interface | IxC roadmap

TCAL64xx/TCAL95xx

Ultra Low Voltage Agile I/O Expander Family

Features

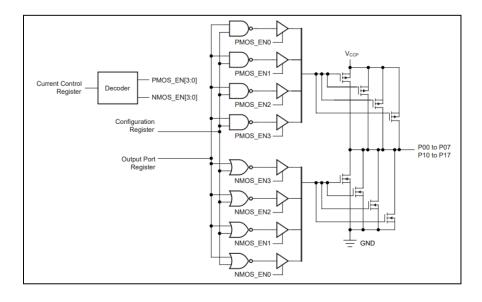
- 8/16-bit I2C bus GPIO expanders
- Low supply voltage range of 1.08 V to 3.6 V
 - 64xx family supports level translation, 95xx is single supply
- Fast-Mode plus (FM+) I2C Interface (1000 kHz)
- Small 16 pin QFN package (1.6 x 1.6 x 0.35mm height)
- Highly configurable IO interface
 - Selectable pull-up and pull-down resistors
 - Configurable push-pull or open-drain outputs
- Low typical standby current <1 μA (1.8 V typ)
- Operating temperature: -40°C to 125°C
- ESD protection:
 - 2000-V Human-body model (A114-A)
 - 1000-V Charged-Device model (C101)


Applications

- Wearables
- · System monitoring:
 - o LED driving
 - Button input
- Industrial automation, Factory automation, Building automation, Protection relay
- Telecom baseband
- Computing segments

Benefits

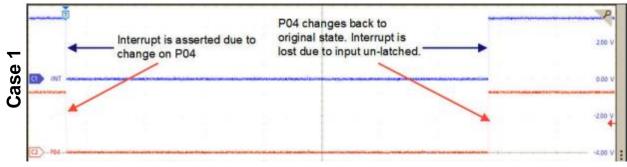
- · Low voltage support for next generation processors
- Reduced BoM and board space providing reduced costs
- Higher data rates allowing increased data throughput
- Reduced current consumption for power critical systems
- System adaptability for easy prototyping
- Agile I/O Features:
 - Programmable output drive strength
 - Latchable inputs
 - · Mask Interrupt & Interrupt status register
 - Programmable output configuration
 - Selectable input pull-up/pull down registers


Agile I/O | Features

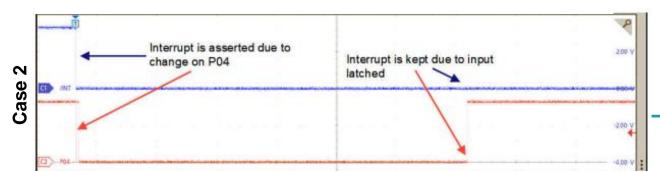
<u>TCAL64xx/95xx</u> Ultra Low Voltage <u>Agile I/O</u> Expander Family improves the I/O by increasing flexibility and allowing the user to optimize their design for power consumption, speed, and EMI at lower cost

Agile I/O Features	Benefit
Programmable output drive strength	 Helps conserve battery power Reduces EMI issues and system noise
Latchable inputs	 Locks in any changes on input pins until the input port register is read Eliminates external hardware Simplifies software
Mask Interrupt	 Selects which inputs can cause an interrupt event on the output pin simplifying Interrupt service software Masks abnormal interrupts from meddling with software performance
Interrupt status register	 Simplifies interrupt service routine software by specifying which input caused an event on the pin Improves software performance
Programmable output configuration	 Customizable output configurations (open-drain or push-pull outputs) Increases flexibility and simplifies software
Selectable input pull-up/pull down registers	Reduces BOM cost by eliminating need for external resistors

Programmable output drive strength

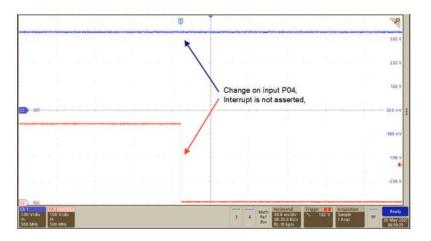


- Weaker outputs reduce ringing effects
- Can vary drive strength for different loading conditions
- Reduces overall power consumption


Table 2-2. Two-Bit Combination for Adjusting Output
Drive Strength on P-Port

CC – XX	Output Strength
00	0.25x
01	0.5x
10	0.75x
11	1.00x

Latchable inputs


Interrupt is asserted and lost due to the input changing back to its original state

Interrupt is kept even when input changes back to its original state

This is the main difference between our <u>TCA</u> and <u>TCAL</u> IO expanders.

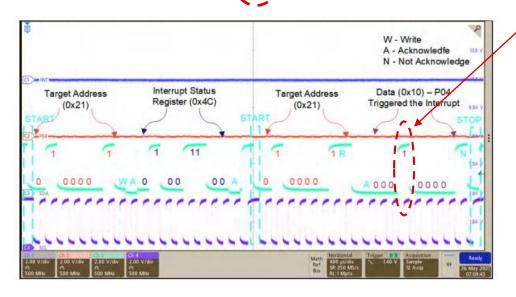
Maskable interrupts

Change on input P04,
causes interrupt to assert.

Change on input P04,
causes interrupt to assert.

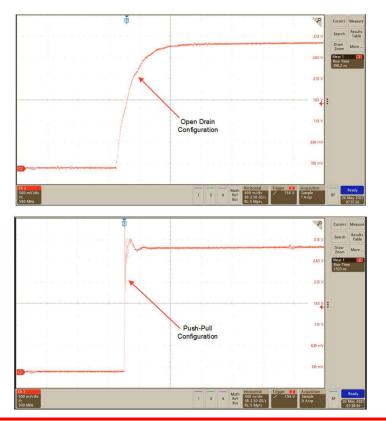
250 m/V
25

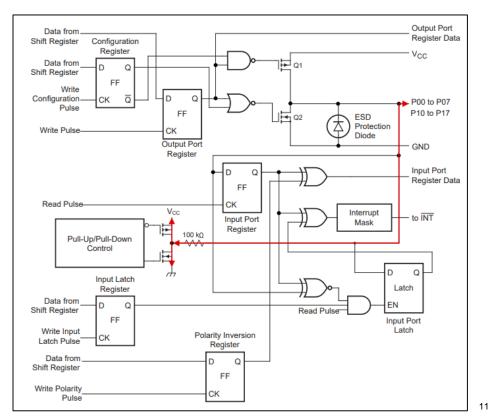
"Interrupt is Masked"


"Interrupt is Un-Masked"

***Maskable interrupts are useful for priority switching. When one task is more important the another, the designer can choose to mask an interrupt to push the GPIO's task lower in the priority list.

Interrupt status register


P04


			_					
BIT	S-07	S-06	S-05	S-04	S-03	S-02	S-01	S-00
Default	0	0	0	0	0	0	0	0
BIT	S-17	S-16	S-15	S-14	S-13	S-12	S-11	S-10
Default	0	0	0	0 /	0	0	0	0

- Interrupt status register flags which pport was responsible for triggering the interrupt
 - (Benefit) Instead of polling through each
 IO port, a single register can be read to
 determine source of interrupt

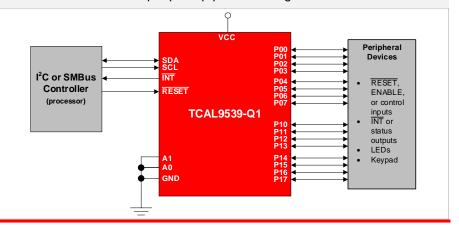
Programmable output configuration and Pull-Up/Pull-down resistors

TCAL9539-Q1

Ultra Low Voltage 16-Bit I2C and SMBus Agile I/O Expander

Sampling

Features

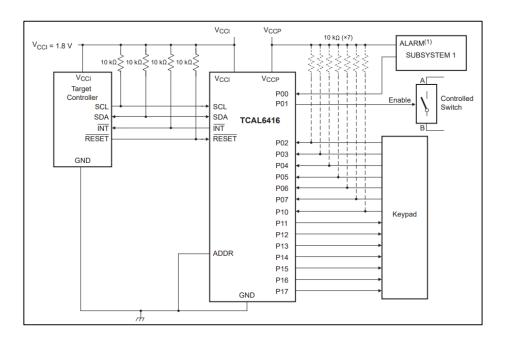

- 16-bit I2C bus GPIO expander
- Low supply voltage range of 1.08 V to 3.6 V
- Fast-Mode plus (FM+) I2C Interface (1000 kHz)
- · Highly configurable IO interface:
 - Selectable pull-up and pull-down resistors
 - Configurable push-pull or open-drain outputs
- Low typical standby current <1 μA (1.8 V typ)
- Operating temperature: -40°C to 125°C
- ESD protection:
 - 2000-V Human-body model (A114-A)
 - 1000-V Charged-Device model (C101)
- Packaging:
 - 24 pin WQFN package (4 mm x 4 mm)
- AEC-Q100 qualified for automotive applications

Applications

- Automotive Infotainment
- Advanced Drive Assistance Systems (ADAS)
- Automotive Body Electronics
- · HEV, EV, and Power train
- System monitoring:
 - LED driving
 - Button input
- o Industrial automation, Factory automation, Building automation

Benefits

- Low voltage support for next generation processors
- Reduced BoM and board space providing reduced costs
- Higher data rates allowing increased data throughput
- Reduced current consumption for power critical systems
- System adaptability for easy prototyping
- Agile I/O Features:
 - Programmable output drive strength
 - Latchable inputs
 - Mask Interrupt & Interrupt status register
 - Programmable output configuration
 - Selectable input pull-up/pull down registers


TCA6408 | performance benchmark

	TCAL6408	TCA6408A
VCC support	1.08 – 3.6V	1.65 – 5.5V
Data rate	1MHz	400kHz
Temperature range	-40°C – 125°C	-40°C − 85°C
Agile IO features	Yes	No
Standby current (max)	1.5µA	7μΑ
Small QFN Package (<0.4mm height)	Yes	No
Packages Offered	TSSOP, UQFN, X2QFN	TSSOP, VQFN, UQFN
Current sinking capability	25mA	25mA
ESD HBM	2kV	2kV

TCA6416 | performance benchmark

	TCAL6416	TCA6416A
VCC support	1.08 – 3.6V	1.65 – 5.5V
Data rate	1MHz	400kHz
Temperature range	-40°C – 125°C	-40°C − 85°C
Agile IO features	Yes	No
Standby current (max)	ЗμΑ	5μΑ
Packages offered	TSSOP, WQFN	TSSOP, WQFN
Current sinking capability	25mA	25mA
ESD HBM	2kV	2kV

TCAL Agile I/O applications

Target Sectors:

- Wearables
- System monitoring:
 - LED driving
 - Button input
- Industrial automation, Factory automation, Building automation, Protection relay
- Telecom baseband
- Computing segments

Key care-about:

- 1. Additional configurable I/O's, 8/16-bit translating/non-level translating options
- 2. Low-voltage support, 1.08 V to 3.6 V
- Reduce BOM and board space, X2QFN package
- 4. Faster data rates, 1MHz I2C speeds

TCAL6408 in temperature sensor interface for PLC's

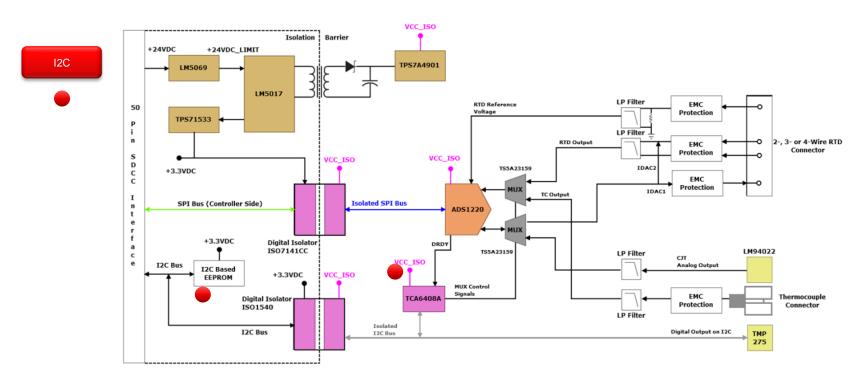


Figure 1. Block Diagram of Temperature Sensor Interface Module for PLC

Specifications: I2C vs I3C

Features	I2C	13C	
Frequency	400KHz	SDR up to 12.5MHz	
Typology	Open Drain only	Open Drain & Push-Pull	
Multi-Host	1 Host	Multi-Host/ 1 Host at a time	
Operation Modes (SDR, HDR-DDR)	High Speed Mode	HDR mode	
Capacitive Load per bus line	400 pF for FM; 550 pF for FM+	50 pF	
Dynamic Addressing	Static	Dynamic (plug and play)	
Voltage Levels	1.8, 3.3, 5.0V	1.2, 1.8, 3.3 V	
In band Interrupt (reduce pin#)	Host initiate Alert pin	Target request control	
Hot Join	Not supported	Supported	

^{*}Specs from MIPI I3C-Basic specification

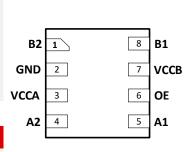
^{*}Images from MIPI Alliance

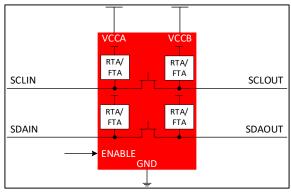
TCA39416

Sampling

Ultra-low voltage I3C and I2C translator with rise time accelerators

Features

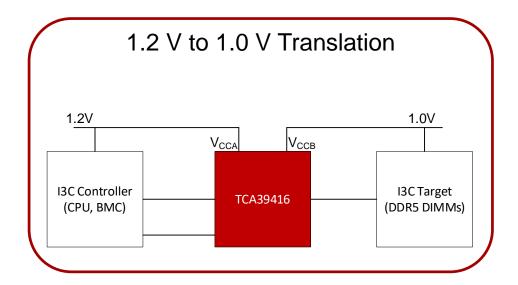

- VCCA and VCCB supply range of 0.72 V to 1.98 V
- Integrated rise and fall time accelerators to redrive signal
- Compatible with MIPI I3C supporting speeds up to 12.5 MHz
- Standard mode, Fast mode and Fast-mode plus I²C support
- 0.72 V to 1.98 V on both A and B ports; V_{CCA} ≤ V_{CCB}
- No power-supply sequencing required: either VCCA
- or VCCB can be ramped first
- Low ICC current
- Powered-off high impedance for all pins
- Temperature Range: -40°C to +125°C
- ESD protection: 2000-V Human-body model (A114-A)
- · Packages:
 - 8-pin SOT-23 package (DDF, 1.6mm x 2.9mm)
 - 8-pin X2SON package (DTW, 1.35mm x 1.00mm)


Applications

- Enterprise Servers
- PC & Notebooks
- Industrial Servers
- Wearables

Benefits

- Rise and fall time accelerators speed up the rise and fall times
- Redrive signal with integrated edge rate accelerators (RTA/FTA)
- Symmetrical power supply support allows for low voltage buffering in addition to translation
- I3C (data rates up to 12.5 Mbps in SDR mode, 25 Mbps in HDR-DDR mode)



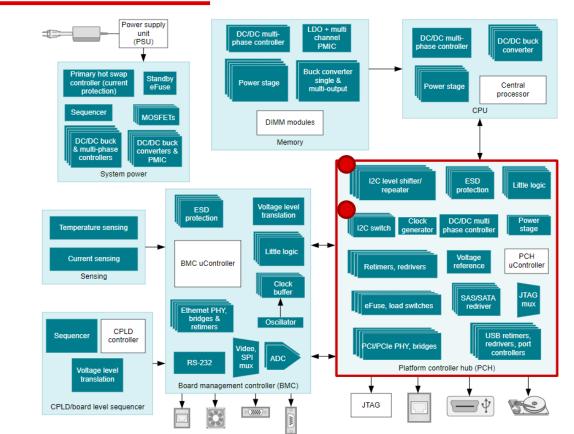
TCA39416 | performance benchmark

	TCA39306	TCA39416	
Supply voltage (V)	.72 V to 1.98 V	.72 V to 1.98 V	
V _{CCA} vs V _{CCB} dependencies	$V_{CCA} \le V_{CCB}$	V _{CCA} ≤ V _{CCB}	
Data rate @ 12.5MHz	12.5 Mbps	25 Mbps with HDR-DDR	
Temperature (°C)	-40 to 125	-40 to 125	
Supply current EN LOW @ 1.98V V _{cc}	< 1 μΑ	< 40 µA	
ESD protection	HBM: 2kV CDM: 1kV	HBM: 4kV CDM: 1.5kV	
Package	8-pin X2SON (DTM) 8-pin SOT-23 (DDF) 8-pin VSSOP (DCU)	8-pin SOT-23 (DDF) 8-pin X2SON	
Additional features		Rise and fall time accelerators	

I3C level translator | applications

Target Sectors:

- DDR5 DIMM modules
- Enterprise Servers
- PC & Notebooks
- Wearables


Key care-about:

- 1. 1.2 V or 1.8V to <u>1.0 V</u> translation
- 2. Support 12.5 MHz (I3C) speed
- 3. I3C HDR support >25Mbps

I3C in rack servers

I³C/I²C/SPI/

SMBUS

Getting started

You can start evaluating this device leveraging the following:

Content type	TCAL64XX/95XX	TCA39416
Product folder	TCAL6408, TCAL6416, TCAL9538, TCAL9539, TCAL9539-Q1	TCA39416
Customer training series or webinar session	I2C Technology Training	I3C Technology Training
Technical blog content or white paper	Features of TCAL Agile I/O Expanders	I3C – Next Generation Serial Communication Interface
Development tool or evaluation kit	I/O Expander EVM	TCA39416 EVM

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated