
TI Precision Labs - LDC calculator tool

Presented by Justin Beigel

What is FEMM?

- Finite Element Method Magnetics
- www.femm.info

FEMM spreadsheet coil design inputs

		LC Sensor calcu	ılations			
LDC Device		LDC3114				
Operating temperature	Т	25	°C Enter operating temperature			
Sensor capacitance	С	220.0	pF	Select LC tank capacitance		
Layers	М	2	Layers	Number of layers on PCB board (1≤M≤8)		
Turns (per layer)	N		Turns	Number of turns per layer		
Outer diameter of the inductor	d _{OUT}	10.00	mm	Outer Diameter of the spiral inductor		
Sensor Shape		Circular				
Long side of inductor	d_L	17.40	mm			
spacing between traces	S	4.000	mil	Space between traces (mm or mil)		
width of trace	W	4.000	mil	Width of the trace (mm or mil)		
PCB thickness between 1st layer and 2nd layer	h12	8.000	mil	Space between layer 1 and 2 (mm or mil)		
PCB thickness between 2nd layer and 3rd layer	h23	8.000	mil	Space between layer 2 and 3 (mm or mil)		
PCB thickness between 3rd layer and 4th layer	h34	8.000	mil	Space between layer 3 and 4 (mm or mil)		
PCB thickness between 4th layer and 5th laye	h45	8.000	mil	Space between layer 4 and 5 (mm or mil)		
PCB thickness between 5th layer and 6th layer	h56	8.000	mil	Space between layer 5 and 6 (mm or mil)		
PCB thickness between 6th layer and 7th layer	h67	8.000	mil	Space between layer 6 and 7 (mm or mil)		
PCB thickness between 7th layer and 8th laye	h78	88.000	mil	Space between layer 7 and 8 (mm or mil)		
Copper thickness	t	1.000	oz-Cu	Copper layer thickness (mm,Oz-Cu, or mil)		
Conductor Resistivity (at 20°C)	pr	1.68E-08	Ωm	Use 1.68e-08 for Copper		
Conductor Resistivity temperature coef	pr_tc	0.393	%/°C	Use 0.393 for Copper		
Conductor relative permeability	μ _r	1.00		Use 1.0 for Copper		
Parasitic capacitance	Cpar	4.0	pF	Estimate - generally in the rage of 1 to 5 pf		
Copper resistivity at operating temperature	pr_t	1.713E-08	Ωm			
Coil Fill Ratio	din/dout	0.59		0.2> >0.8 is recommended		
Inductor inner diameter	din	5.936	mm	Inner diameter of the spiral inductor (mm or mil)		

FEMM spreadsheet coil design outputs

Copper resistivity at operating temperature	pr_t	1.713E-08	Ωm	
Coil Fill Ratio	din/dout	0.59		0.2> >0.8 is recommended
Inductor inner diameter	din	5.936	mm	Inner diameter of the spiral inductor (mm or mil)
Self inductance per layer	L	1.141	μН	
Total Inductance with no target	L _{TOTAL}	4.006	μΗ	
Sensor Operating Frequency no target	f _{RES}	5.313	MHz	
Rp with no Target	R _P	4.31	kΩ	
Q factor	Q	31.68		
Self resonant frequency (estimated)	SRF	39.757	MHz	SRF must be >1.25*Fsensor
Target Material		Aluminum, 1100		Select Air for No Target
Other target material - enter here & select above		enter here		Enter exactly as named in FEMM materials library
Target Thickness		0.200	mm	
Target Distance	D	3.000	mm	
Sensor Inductance from Target Interac	Ľ	3.874	μH	
Sensor Frequency with Target Interact	f _{RES} '	5.403	MHz	
Rp with Target Interation	R _P '	4.15	kΩ	
Q Factor with target	Ġ	31.3		Sensor Q too high

4

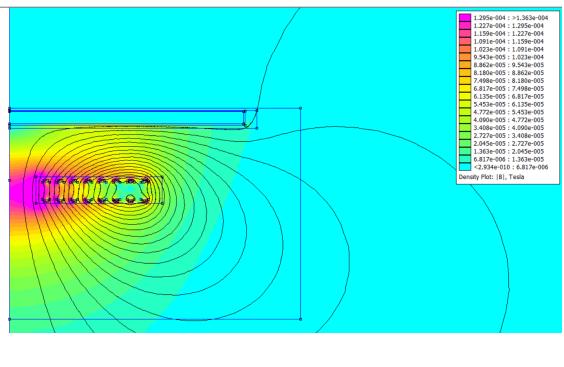
FEMM spreadsheet fixed design

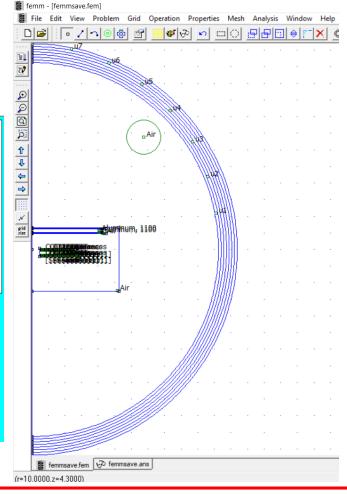
Copper resistivity at operating temperature	pr_t	1.713E-08	Ωm		
Coil Fill Ratio	din/dout	0.72		0.2> >0.8 is recommended	
Inductor inner diameter	din	7.155	mm	Inner diameter of the spiral inductor (mm or mil)	
Self inductance per layer	L	0.714	μΗ		
Total Inductance with no target	L _{TOTAL}	2.293	μΗ		
Sensor Operating Frequency no target	f _{RES}	7.023	MHz		
Rp with no Target	R _P	3.05	kΩ		
Q factor	Q	29.59			
Self resonant frequency (estimated)	SRF	52.554	MHz	SRF must be >1.25*Fsensor	
Target Material		Aluminum, 1100		Select Air for No Target	
Other target material - enter here & select above		enter here		Enter exactly as named in FEMM materials library	
Target Thickness		0.200	mm		
Target Distance	D	3.000	mm		
Sensor Inductance from Target Interac	L'	2.226	μΗ		
Sensor Frequency with Target Interact	f _{RES} '	7.127	MHz		
Rp with Target Interation	R _P '	2.95	kΩ		
Q Factor with target	Q'	29.3			

5

Spreadsheet results

FEMM Simulation Results (only updated after pressing Run FEM					
Pass Parameters for FEMM SIM					
L		2.4673	μН		
Rp		3.337	kΩ		
Q		31.79			
Sensor Frequency with Target		6.7699	MHz		
Target Movement shift		0.1000	mm		
Sensor Frequency at shifted target		6.7532	MHz		
Sensitivity (frequency shift)		24.6	ppm/µm		


Run FEMM


▼ Run Sensitivity Analysis

Save FEMM simulation

FEMM simulation

To find more Inductive Sensor technical resources and search products, visit ti.com/ldc