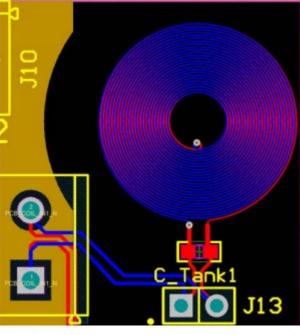
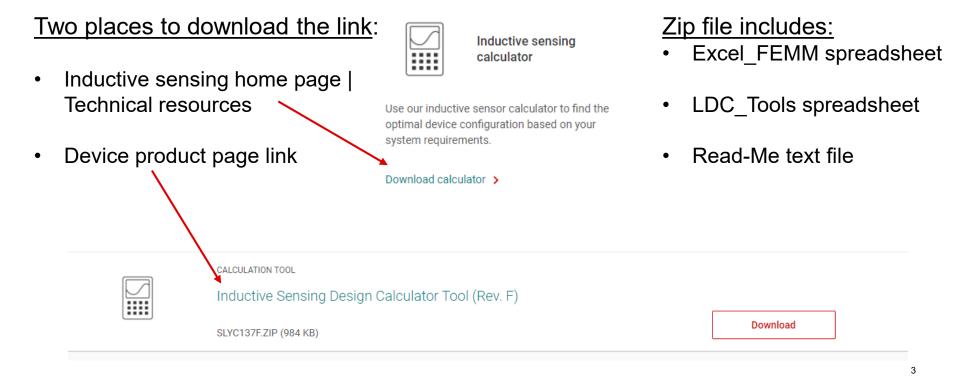

TI Precision Labs - LDC calculator tool


Presented by Justin Beigel


Why does the tool exist?

- Key sensor design components
 - Sensor size
 - Outer diameter
 - Inner diameter
 - Layers
 - Trace width
 - Trace spacing
 - Inductance
 - Capacitance
 - Frequency
 - Q factor
 - Device chosen
 - Target interaction

LDC calculator overview

Contents

rev1.50

Updated in Version 1.49

Updated in Version 1.49

Note: these calculation tools are provided without any warranty. User should independently verify any calculation results.

Instructions

Links to different tabs

Click on a tool from the list below:

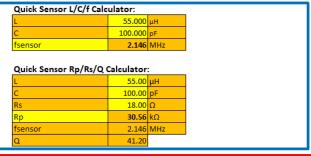
Spiral Inductor Designer

Skin Depth Calculation

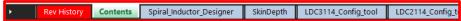
LDC161x/LDC131xConfig Tool Updated in Version 1.48

LDC131x/LDC161x Sensor Configurati Updated in Version 1.48

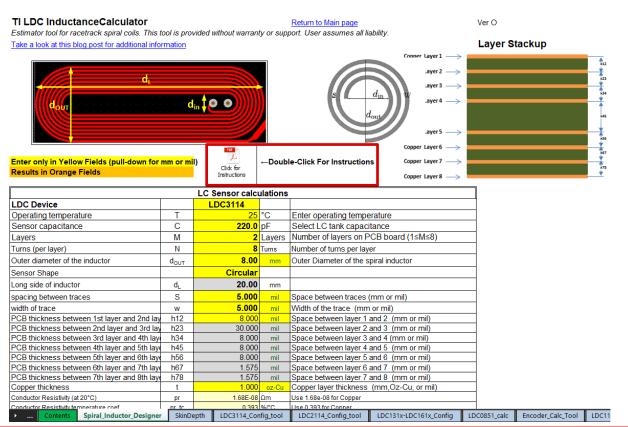
LDC0851 Calculator Tool


LDC1101 Calc LDC1000 Tools

Encoder Knob Design Tool New in Version 1.39!
Spring Sensor Calculator Tool


LDC2114 Config Tool
Metal Deflection Calculator

LDC3114 Config Tool New in Version 1.50


Quick Calculations

Different tabs

Spiral inductor designer

Skin depth

Skin Depth Calculator

Return to Main Page

AC currents remain on the surface of conductor, decaying in an exponential manner. The depth of \sim 63% of the current is called the skin depth. A higher frequency will have a shallower skin depth. It is recommended to use a target thickness of at least 3 skin depths for a good LDC measurement. If you want to minimize the effect of a conductor, use a target thickness of less than 0.5 skin depths Reminder: 1oz copper is \sim 35 μ m thick.

Target Material	Aluminum	
Resitivity	26.5E-9	Ωm
Relative Permeability	1.00	
Sensor Frequency	7.000	MHz
Skin Depth	31.0	μm
Material Thickness	0.20	mm
Number of Skin Depths	6.46	skin depths
Percentage of Current:	99.843	%

Skin Depth = $\delta_s = \sqrt{\frac{2\rho}{2\pi f \mu_0 \mu_R}}$
where:
$\rho = bulk \ resitivity \ (ohm-meters)$
f = frequency(Hertz)
$\mu_{\rm 0} = {\it permeability constant (Henries meter)} = 4\pi \times 10^{-7}$
$\mu_{r} = relative permeability (usually ~ 1)$
Courtesy of Microwaves101.com

Quick Sensor L/C/f Calculator

L	20.000	μН
С	100.000	pF
fsensor	3.559	MHz

Device specific

Device tabs

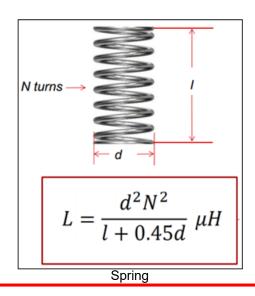
LDC3114 tab for reference

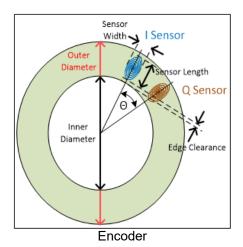
LDC3114_Config_tool | LDC2114_Config_tool | LDC131x-LDC161x_Config | LDC0851_calc

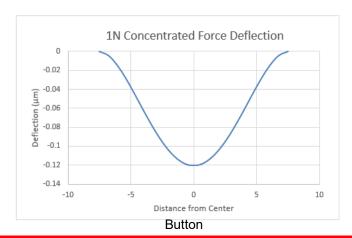

Device: LDC3114

✓ Enable Raw

LDC3114 Configuration Tool


Return to Main Pag


Enabled Buttons:
Enabled in LP mode:
Sensor R_P
Sensor R_P Range f_{SENSOR} (with target)
Target Sample Time interval
LCDIV
Sensor Cycle Count
Actual Sample Time Interval
CNTSC



Specific application tabs

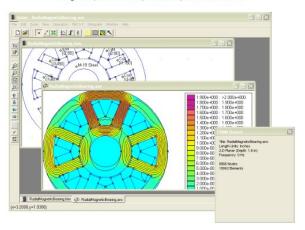
- Encoder
- Dial
- Metal deflection (Button)
- Spring

0

Excel FEMM tool

- <u>Finite Element Method Magnetics</u>
 - www.femm.info

FEMM Simulation Results (only updated after pressing Run FEMM button			
Pass Parameters for FEMM SIM			
L		11.1960	μН
Rp		7.477	kΩ
Q		33.44	
Sensor Frequency with Target		3.1781	MHz
Target Movement shift		0.0100	mm
Sensor Frequency at shifted target			MHz
Sensitivity (frequency shift)			ppm/μm


Run FEMM

Run Sensitivity Analysis

Save FEMM simulation

Finite Element Method Magnetics

Magnetics, Electrostatics, Heat Flow, and Current Flow

To find more Inductive Sensor technical resources and search products, visit the inductive sensing home page

https://www.ti.com/sensors/specialty-sensors/inductive/overview.html