
EtherCAT Slave Overview

1

EtherCAT Slave Node

2

• For each slave node, data always comes in from the master (Port 0)

• The EtherCAT Processing Unit (EPU) is the logical core of an EtherCAT slave controller. It contains registers, memories

and data processing elements. A frame always comes from port A before passing through the EtherCAT Processing Unit. It

receives, analyzes and processes the EtherCAT data stream.

• The other ports (1, 2, 3) connect to downstream nodes

• When there is no connection to a port, the port’s internal switch closes

From

Master

To

Master

Output

Input

Port 0

Port 2

Port 3

Port 1

EtherCAT Slave – EPU Overview (1 of 2)

3

Highlights

• DPRAM – Each slave contains a Dual-Port RAM

that’s accessible by the master and slave.

– Master access is always available.

– Slave access depends on the state machine state

• FMMU – Memory Management Unit

– Maps (bitwise!) mapping of logical to physical

addresses in the ESC

• SyncManager

– Manages consistent exchange of data via mailboxes

between master and slaves.

• PDI (process data interface)

– Interface to the device running the protocol stack

– Example: Via SPI, on-chip bus, EMIF, etc

• Distributed Clock

– Synchronizes Local clock to Master Reference

– Provides time/syncronized Input/Output (Sync/Latch)

EtherCAT Slave – EPU Overview (2 of 2)

4

Highlights

• EEPROM Interface to standard I2C memories

– Loaded automatically after ESC Reset

– Contains Configuration Information including:

• Slave Node Vendor, Product, Rev/serial #s

• Communication defaults

• FMMU & SyncManager data

– Minimum EEPROM size is 2kbit, 32kb or larger is

supported for complex devices.

EtherCAT Slave – EPU: FMMU Details

5

• FMMUs map the ESC RAM interval into the global address space of the master and vice versa

• With FMMU, each slave reads and writes its data in the same position. Multiple slaves can share the
same datagram

– Without FMMU, each slave that needs to be addressed would require its own datagram

• Direction: Write

• Logical Address: 0x10000007

• Len: 4 Bytes

• Physical Address: 0x1100

FMMU 0

EtherCAT Slave

• Direction: Read

• Logical Address: 0x10000000

• Len: 5 Bytes

• Physical Address: 0x1400

FMMU 1

EtherCAT Frame

Frame

Header

Datagram

Header
CC CC CC CC CC XX XX AA AA AA AA XX XX

Cmd: Logical Read Write

Address: 0x10000000

EtherCAT Slave – EPU: SyncManager Details

6

• SyncManagers protect the Process Data RAM interval from simultaneous access to maintain data
consistency

• SyncManager Mailbox (1-buffer) Type: Used for non-process data communication
– Writing side must write before reading side can read

– Reading side must read before writing side can write again

• SyncManager Buffered (3-buffer) Type: Used for process data communication
– 3 buffers guarantee consistent data delivery and access to the newest data any time

EtherCAT Slave

Process Data RAM

BB BB BB BB BB

BB BB BB BB BB

BB BB BB BB BB

BB BB BB BB BB

BB BB BB BB BB

EtherCAT Slave

Process Data RAM

BB BB BB BB BB

BB BB BB BB BB

BB BB BB BB BB

BB BB BB BB BB

BB BB BB BB BB

AA AA AA AA AA

AA AA AA AA AA

AA AA AA AA AA

AA AA AA AA AA

AA AA AA AA AA

CC CC CC CC CC

CC CC CC CC CC

CC CC CC CC CC

CC CC CC CC CC

CC CC CC CC CC

Slave Read/Write

Master Read/Write

M
a

il
b

o
x
 T

y
p

e

(1
-b

u
ff

e
r)

B
u

ff
e

re
d

 T
y
p

e

(3
-b

u
ff

e
r)

Slave Read/Write

Master Read/Write

EtherCAT Slave – Slave Stack Structure

7

HW State

Machine Hardware

Software

EtherCAT Slave – Communication Profiles Details

8

Profiles Details

Ethernet over EtherCAT

(EoE)

• Tunnels standard Ethernet communication (ex: TCP/IP) over

EtherCAT

• Allows the master to optimize Ethernet communication without

affecting the process data exchange

CAN application protocol

over EtherCAT (CoE)

• Access of a CANopen object dictionary

• Recommended protocol for service data access

• Easy migration path from CANopen devices to EtherCAT device

File Access over EtherCAT

(FoE)

• Download and upload files (ex: firmware download)

• Similar to Trivial File Transfer Protocol, RFC 1350

• Lean stack implementation, suitable for bootstrap loaders

Servo Drive over EtherCAT

(SoE)

• Access the Servo Profile Identifier

• Implements service channel

• Read/write to several elements of an IDN

• Support of procedure commands

EtherCAT Slave – State Machine

9

• Init

– No communication on the application layer is

available. The master has access only to the DL-

information registers.

• Pre-Op

– PREOP Pre-Operational state. Mailbox

communication on the application layer available, but

no process data communication available.

• Safe-Op

– Safe-Operational state. Mailbox communication on

the application layer, process (input) data

communication available. In SafeOp only inputs are

evaluated; outputs are kept in ‘safe’ state.

• Operational

– Process data inputs and outputs are valid.

• Note that the Master requests each transition, but the slave must confirm it.

AL Control (0x0120) AL Status (0x0130) (in DPRAM Mem Space)

EtherCAT Slave – Safety over EtherCAT (FSoE)

10

• EtherCAT safety support utilizes

FailSafe over EtherCAT (FSoE)

protocol

• Enables transmission of safety-

related data in parallel with standard

data on the same network

• Slaves in the network are identified

as FSoE Master and FSoE

supporting-slaves

• FSoE is designed to be used in

conjunction with standard EtherCAT

communication protocols

https://www.ethercat.org/safety

https://www.ethercat.org/safety

More Information on EtherCAT

www.ethercat.org

11

