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• For each slave node, data always comes in from the master (Port 0) 

• The EtherCAT Processing Unit (EPU) is the logical core of an EtherCAT slave controller. It contains registers, memories 

and data processing elements. A frame always comes from port A before passing through the EtherCAT Processing Unit. It 

receives, analyzes and processes the EtherCAT data stream. 

• The other ports (1, 2, 3) connect to downstream nodes 

• When there is no connection to a port, the port’s internal switch closes 
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Highlights 

• DPRAM – Each slave contains a Dual-Port RAM 

that’s accessible by the master and slave.   

– Master access is always available.   

– Slave access depends on the state machine state 

• FMMU – Memory Management Unit 

– Maps (bitwise!) mapping of logical to physical 

addresses in the ESC 

• SyncManager 

– Manages consistent exchange of data via mailboxes 

between master and slaves. 

• PDI (process data interface) 

– Interface to the device running the protocol stack 

– Example: Via SPI, on-chip bus, EMIF, etc 

• Distributed Clock 

– Synchronizes Local clock to Master Reference 

– Provides time/syncronized Input/Output (Sync/Latch) 
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Highlights 

• EEPROM Interface to standard I2C memories 

– Loaded automatically after ESC Reset 

– Contains Configuration Information including: 

• Slave Node Vendor, Product, Rev/serial #s 

• Communication defaults 

• FMMU & SyncManager data 

– Minimum EEPROM size is 2kbit, 32kb or larger is 

supported for complex devices. 
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• FMMUs map the ESC RAM interval into the global address space of the master and vice versa 

• With FMMU, each slave reads and writes its data in the same position. Multiple slaves can share the 
same datagram 

– Without FMMU, each slave that needs to be addressed would require its own datagram 

• Direction: Write 

• Logical Address: 0x10000007 

• Len: 4 Bytes 

• Physical Address: 0x1100 

FMMU 0 

EtherCAT Slave 

• Direction: Read 

• Logical Address: 0x10000000 

• Len: 5 Bytes 

• Physical Address: 0x1400 

FMMU 1 

EtherCAT Frame 

Frame 

Header 

Datagram 

Header 
CC CC CC CC CC XX XX AA AA AA AA XX XX 

Cmd: Logical Read Write 

Address: 0x10000000 



EtherCAT Slave – EPU: SyncManager Details 
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• SyncManagers protect the Process Data RAM interval from simultaneous access to maintain data 
consistency 

• SyncManager Mailbox (1-buffer) Type: Used for non-process data communication 
– Writing side must write before reading side can read 

– Reading side must read before writing side can write again 

• SyncManager Buffered (3-buffer) Type: Used for process data communication 
– 3 buffers guarantee consistent data delivery and access to the newest data any time 
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EtherCAT Slave – Slave Stack Structure 
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HW State 

Machine Hardware 

Software 



EtherCAT Slave – Communication Profiles Details 
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Profiles Details 

Ethernet over EtherCAT 

(EoE) 

• Tunnels standard Ethernet communication (ex: TCP/IP) over 

EtherCAT 

• Allows the master to optimize Ethernet communication without 

affecting the process data exchange 

CAN application protocol 

over EtherCAT (CoE) 

• Access of a CANopen object dictionary 

• Recommended protocol for service data access 

• Easy migration path from CANopen devices to EtherCAT device 

File Access over EtherCAT 

(FoE) 

• Download and upload files (ex: firmware download) 

• Similar to Trivial File Transfer Protocol, RFC 1350 

• Lean stack implementation, suitable for bootstrap loaders 

Servo Drive over EtherCAT 

(SoE) 

• Access the Servo Profile Identifier 

• Implements service channel 

• Read/write to several elements of an IDN 

• Support of procedure commands 



EtherCAT Slave – State Machine 
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• Init 

– No communication on the application layer is 

available. The master has access only to the DL-

information registers. 

• Pre-Op 

– PREOP Pre-Operational state. Mailbox 

communication on the application layer available, but 

no process data communication available. 

• Safe-Op 

– Safe-Operational state. Mailbox communication on 

the application layer, process (input) data 

communication available. In SafeOp only inputs are 

evaluated; outputs are kept in ‘safe’ state. 

• Operational 

– Process data inputs and outputs are valid. 

• Note that the Master requests each transition, but the slave must confirm it.   

AL Control (0x0120) AL Status (0x0130) (in DPRAM Mem Space) 



EtherCAT Slave – Safety over EtherCAT (FSoE) 
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• EtherCAT safety support utilizes 

FailSafe over EtherCAT (FSoE) 

protocol 

• Enables transmission of safety-

related data in parallel with standard 

data on the same network 

• Slaves in the network are identified 

as FSoE Master and FSoE 

supporting-slaves  

• FSoE is designed to be used in 

conjunction with standard EtherCAT 

communication protocols 

https://www.ethercat.org/safety 

https://www.ethercat.org/safety


More Information on EtherCAT 

www.ethercat.org 
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