
Hello and welcome to the TI precision labs series on passive components and 

circuits.  Today we’ll be discussing RC circuits. 
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RC circuits are composed of resistive and capacitive elements.  They can be 

formed in one of the two ways shown here.  RC circuits can be both intentionally 

designed and occur parasitically.  Because they are so commonly seen with op 

amps, understanding their function is important for analog designers.  In this 

presentation, we will observe both the transient and AC response of RC circuits. 



Recall that a capacitor stores energy in the form of an electric field created by 

the charge on two metallic plates.  When a change in voltage is applied to a 

capacitor, current flows through the capacitor and the stored charge is changed.  

The same is true for an RC circuit.  When a step voltage is suddenly applied to a 

discharged RC circuit, current through the circuit causes the capacitor to charge 

at an exponential rate.  This is referred to as the “step response” of an RC 

circuit.  Similarly, when an RC circuit with stored charge is suddenly tied to 

ground, a current is induced in the capacitor which causes it to discharge.  This 

is referred to as the “natural response” of an RC circuit.  For these equations, 

“VC” refers to the voltage across the capacitor at a given moment in time; “VS“ 

refers to the supply voltage; “Vi” refers to the initial voltage across the capacitor; 

and “t” refers to time. Note that both responses are exponential and depend on 

the product of the resistance and capacitance.  We refer to this important 

product as the “RC time constant” of the circuit and represent it with the Greek 

letter “tau.” 
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To gain a better understanding of these equations, consider these plots for a 

charging RC circuit.  These plots were obtained through a TINA-TI transient 

analysis.  Note that, at time 100µs, a sudden step voltage is applied.  This 

causes the voltage across the capacitor to rise exponentially from its initial 

voltage of 0V and asymptotically approach the final voltage of 1V, as predicted 

by the step response equation.  The current through the capacitor at any given 

point in time is proportional to the derivative of the voltage across the capacitor. 
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A similar SPICE analysis can be run for a discharging RC circuit.  Here, an initial 

voltage of 1V is applied to the capacitor.  Then at time 0, the RC circuit is 

suddenly switched to ground.  The voltage across the capacitor decays 

exponentially, as expected, and the current through the capacitor corresponds to 

the change in voltage.  Note that, in this case, the sign of the current direction is 

flipped because the current is set to flow in the opposite direction. 
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Regardless of the values of the resistor and capacitor in an RC circuit, the 

response will have the same exponential form.  However, the resistor and the 

capacitor will determine the time it takes the capacitor to approach its final 

voltage level.  This time is often measured in “RC time constants,” which are 

represented by the letter “tau.”  For example, a charging RC circuit will take one 

RC time constant to reach 63% of its final charge value, 3 time constants to 

reach 95% of its final charge value, and 5 time constants to reach 99% of its 

final charge value.  Time constants can similarly be used to determine the time 

an RC circuit will take to discharge.  Let’s now look at some examples of this in 

TINA-TI. 
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Let’s first simulate a charging circuit.  The TINA circuit is embedded in this 

presentation for your convenience.  First, open the TINA circuit.  Note, that the 

supply voltage is set to emulate a step function with an amplitude of 1V and a 

100µs delay.  Next, click “Analysis” and “Transient” to set up the simulation.  We 

will run the sim for 1ms.  Press “OK” to run the sim. 
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We can now see the transient response of this circuit for a 1V step function.  For 

this simulation, we used a resistor of 10kΩ and a capacitor of 10nF.  Multiplying 

these two together, we get a time constant of 100µs.  From before, we know that 

a charging RC circuit should reach 95% of its final output voltage after 3 time 

constants.  To find this point, we take the beginning of the step function at time 

100µs and add 300µs.  So we expect to see 95% of our final output level at 

400µs and, similarly, 99% of the final output at 600µs.  Considering that our 

initial voltage was 0V and our final voltage is 1V, we expect to see 950mV 

across the capacitor and 990mV across the capacitor at these points in time.  

This can be verified with a cursor in TINA-TI. 
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The transient response of a discharging RC circuit can be found in the same 

manner.  This time, the voltage supply is disconnected and an initial condition of 

1V is placed across the capacitor.  The circuit is now tied to ground.  The TINA 

file for the circuit used is embedded on this slide. 
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The natural response of the simulated RC circuit shows an exponential decay 

asymptotically approaching zero, as expected.  After 3 time constants, or 300µs, 

95% of the original charge is lost and the voltage level has fallen to 5% of the 

initial voltage level.  In this case, that would be 50mV.  Similarly,  allowing 5 time 

constants, or 500µs, to pass will leave only 1% of the original voltage across the 

capacitor. 
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To conclude our discussion on the transient response of an RC circuit, we 

provide a real-world example.  In general, RC filters are placed at the output of 

op amps and before certain types of ADCs, notably “SAR” ADCs.  The RC circuit 

acts as a “charge bucket,” storing charge in an electrical field to provide current 

to the ADC during the acquisition phase.  This is critical to ensuring an accurate 

and fast conversion of an analog signal to a digital signal and more accurate 

ADCs will require more time constants for the capacitor to settle.  This topic is 

covered in much more detail in the TI Precision Labs series on ADCs. 
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Having covered the time domain, let’s move on to the frequency domain.  Recall 

that a resistor has an impedance that is independent of frequency while a 

capacitor has an impedance that is inversely proportional to frequency.  Analog 

engineers make use of these properties to design frequency filters with RC 

circuits. 
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Let’s begin by discussing the low pass filter.  A low pass RC filter is created by 

placing a resistor followed by a capacitor down to ground.  The output is taken 

between the two components.  An intuitive understanding of this circuit’s AC 

behavior can be obtained by considering the behavior of the capacitor at low and 

high frequencies.  From the previous presentation on passive components, we 

know that at very low frequencies approaching DC, a capacitor will act as an 

open.  If this is done for the low pass filter, the low frequency signal will 

effectively see an open circuit, current will stop flowing, and the input voltage will 

appear at the output.  Thus, the gain will be of 0dB.  On the other hand, a 

capacitor will act as a short circuit at very high frequencies.  In the case of the 

low pass filter, this will effectively short the output to ground.  Thus, the gain will 

approach negative infinity on a decibel scale. 
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The behavior of the low pass filter can be understood using the equation of its 

pole.  At low frequencies where the capacitor acts as an open circuit, the filter 

has a gain of 0dB.  But at higher frequencies, the capacitor has a lesser and 

lesser impedance causing the gain to drop by 20dB per decade.  The key 

transition point between these two regions is referred to as the “pole.”  At the 

pole frequency, the gain of the circuit reaches -3dB and begins to fall rapidly.  

Being able to determine this frequency is key to a successful filter design.  For 

this RC circuit, the pole can be found using the equation “fp equals 1 over 2 pi 

RC,” where fp is the pole frequency in hertz.  For a low pass filter of 10kΩ and 

10nF, we expect to see a pole frequency of 1.59kHz.  Poles and their plots are 

covered in much more detail in the TI Precision Labs series on op amps. 
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Let’s now validate our analysis by running a TINA-TI simulation!  The TINA file 

used is embedded in this presentation for your convenience.  After opening the 

file, we can now run an AC sim.  This can be done clicking “Analysis,” then “AC 

Analysis,” and finally “AC Transfer Characteristic.”  The simulation settings box 

will then pop up.  We will sweep our input signal from 10Hz to 1Mhz.  When 

you’re ready, hit “OK” to run the sim. 
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On the right we can see our simulation results.  Indeed, the overall response of 

the circuit matches our expectations.  There is a low frequency segment of 0dB 

of gain followed by a pole frequency and a region of -20dB/decade of gain.  True 

to its name, the low pass filter passes signals of lower frequency and attenuates 

those at higher frequency.  Using TINA’s cursor function, we can place a cursor 

on the -3dB point to double check our calculation and indeed find that our pole 

comes in at 1.59kHz. 
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The complement of the low pass filter is the high pass filter.  This can be created 

by simply flipping the position of the capacitor and resistor.  Given that they look 

so similar, it can be hard to remember which is a low pass filter and which is a 

high pass filter.  To aid your memory, simply look at the location of the capacitor.  

If the capacitor comes first in the signal path, it’s a high pass filter.  If it comes 

second, then it’s a low pass filter.  The high pass filter has the opposite behavior 

of the low pass filter.  At low frequencies, the capacitor acts as an open such 

that the output is disconnected from the input and pulled down to ground.  The 

gain approaches negative infinity on the decibel scale.  At high frequencies, the 

capacitor acts as a short circuit and shorts the input to the output.  In this 

scenario, the gain approaches 0dB. 

17 



Just as a low pass filter has a critical frequency called a “pole,” the high pass 

filter has a critical point called a “zero.”  Prior to this frequency, the circuit 

attenuates the input.  As the zero frequency is approached, the attenuation is 

lessened by 20dB/dec.  The zero frequency has a gain of -3dB and the 

frequencies above this point show a gain of about 0dB.  Note that the zero 

frequency equation is the same as the pole frequency equation.  However, we 

now use “fz” to denote the zero frequency.  For this high pass filter, we use the 

same component values as before.  However, we now expect to see a zero at 

1.59kHz rather than a pole.  Zeroes and their plots are covered in much more 

detail in the TI Precision Labs series on op amps. 

18 



Let’s again validate our analysis by running a TINA-TI simulation!  Download the 

embedded TINA file and open it.  Run an AC sim as before by clicking 

“Analysis,” then “AC Analysis,” and “AC Transfer Characteristic.”  The simulation 

settings box will pop up.  Sweep the input signal from 10Hz to 1Mhz and hit “OK” 

to run the sim. 
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Again, the overall response of the circuit matches our expectation.  The high 

pass filter attenuates signals at low frequencies and allows the higher frequency 

signals to pass.  Using TINA’s cursor function, we can place a cursor on the -

3dB point to double check our calculation and indeed find that our zero comes in 

at 1.59kHz. 
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That concludes this lesson!  Thanks for your time and please try the quiz. 
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Question 1.  Fill in the blank.  The natural response of an RC circuit involves a 

______ capacitor and is described by the equation: _________.  The correct 

answer is “B.”  The “natural response” of an RC circuit refers to its ability to 

discharge and is described by the equation “VC = Vi times ‘e’ to the –t/RC.” 
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Question 2.  Assume a capacitor in an RC charge bucket has no charge stored 

and begins at zero volts across its nodes.  Suddenly, a step voltage is applied.  

How many time constants will it take to reach 95% and 99% of its final voltage 

level, respectively?  The correct answer is “D.”  It will take 3 and 5 constants for 

the capacitor to reach 95% and 99% of its final voltage level, respectively. 
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Question 3.  True or False: The circuit on the left is a high pass, RC filter and the 

circuit on the right is a low pass, RC filter. The correct answer is true.  

Remember that for a high pass filter the current first passes through the 

capacitor and then the resistor while the opposite is true for the low pass filter. 



That’s all for now!  Thanks again for your time. 
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