
Hello and welcome to the TI precision labs series on passive components and 

circuits.  Today we’ll be discussing the transient and frequency-based behavior 

of resistors, capacitors, and inductors. 
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Before we discuss the passive electrical components, let’s review complex 

numbers.  Recall that in mathematical nomenclature, the letter “i” is used to 

represent the square root of -1.  Because no such real number exists, we refer 

to this as an “imaginary” number.  Also note, that because “i” is typically used to 

refer to current, electrical engineers prefer to use the letter “j.”  So any number 

can be expressed as the sum of its real and imaginary parts, as shown here for 

“x equals a plus jb.”  In this equation, the term “a” is the real part of the number x 

and the term “b” is the imaginary part.  Complex numbers can also be 

represented by a “magnitude” and a “phase” or “angle.”  Similarly, electrical 

impedances, denoted by the letter “Z,” can have both real and imaginary parts.  

The real part is called “resistance” and is represented by the letter “R.”  The 

imaginary part is called “reactance” and is represented by the letter “X.”  The 

magnitude and phase of a complex number can also be used when describing 

the impedance of a passive component. 
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Let’s now discuss the simplest of the passive components: the resistor.  The 

ideal resistor has an impedance that is purely real.  In the time domain, this 

behavior is defined by Ohm’s Law, which states that the instantaneous voltage 

across a resistor divided by the instantaneous current through the resistor gives 

the component’s resistance.  The voltage drop across the resistor corresponds 

to the direction of the current flow through the resistor.  Note that the impedance 

of a resistor in the frequency domain is found in the same manner as its 

resistance is independent of frequency. 
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Because the voltage across a resistor and the current through a resistor are 

proportional, it is easy to visualize the current in time from the voltage in time 

and vice versa.  In other words, the plots of voltage across time and current 

across time will have the same shape for an ideal resistor.  They will be scaled 

relative to each other according to the resistance of the component.  Another 

consequence of Ohm’s Law is that both voltage across and current through a 

resistor can change instantaneously.  This may not seem like a big deal, but it is 

actually not the case for the capacitor and inductor. 
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Let’s now move on to the next passive component: the capacitor. The 

capacitor’s behavior is noticeably different as the current through the capacitor is 

proportional to the derivative of the voltage across the capacitor.  The formula 

that defines the transient behavior of the ideal capacitor is written as “I equals C 

dV over dt” where “I” is the current through the component in time measured in 

Amps, “C” is the capacitance of the component measured in Farads, and “V” is 

the voltage across the component in time measured in Volts.  Performing a 

LaPlace transform gives us the impedance of the capacitor in the frequency 

domain.  Here, “Z sub C” is the impedance of the capacitor in Ohms, “J” 

represents the square root of -1, omega represents the signal frequency in 

rad/s, and “C” is the component capacitance in Farads.  Note that the 

impedance of the capacitor is inversely proportional to the frequency of 

operation.  For this reason, the behavior of the capacitor can be approximated at 

low and high frequencies.  For example, at DC or low frequencies, the 

impedance of the capacitor grows such that it can be treated as an open circuit.  

For very high frequencies, the impedance of the capacitor drops such that it can 

be treated as a short circuit.  As with resistors, the voltage drop across a 

capacitor corresponds to the direction of the current flow through the capacitor. 
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As mentioned in the previous slide, the current through a capacitor is 

proportional to the change in voltage across the capacitor.  Consequently, the 

plot of current versus time can be ascertained from the plot of voltage versus 

time.  An important consequence of this relation is that it is impossible for a 

capacitor to experience an instantaneous voltage step across its nodes.  Why?  

Because the derivative of a line of infinite slope is an impulse.  In the case of the 

capacitor, an instantaneous step in voltage would require an instant of infinite 

current through the capacitor.  Clearly, this is impossible.  Thus, any change in 

voltage across a capacitor requires a finite amount of time to take place. 
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So far we have looked at the current through a capacitor given a voltage across 

the capacitor.  But, what happens to the voltage across a capacitor when it is 

charged with a constant current?  As you can see in this plot, a constant current 

flowing through a capacitor results in a linear change in voltage across the 

capacitor.  This relationship is important in op amp design, specifically op amp 

slew rate.  In the videos on slew rate, you will learn that an op amp’s slew rate is 

determined by its Miller capacitance and the maximum current it uses to charge 

the capacitance.  The slope of the resulting linear output is known as slew rate. 
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We now consider the final passive component: the inductor. The inductor’s 

transient behavior is defined by the formula “V equals L dI over dt” where “V” is 

the voltage across the component in time measured in Volts, “L” is the 

inductance of the component measured in Henry, and “I” is the current through 

the component in time measured in Amps.  As with the capacitor, we can use a 

LaPlace transform to find the impedance of the inductor in the frequency 

domain.  Here, “Z sub L” is the impedance of the inductor in Ohms, “J” 

represents the square root of -1, omega represents the signal frequency in 

rad/s, and “L” is the component inductance in Henry.  Note that the impedance 

of the inductor is proportional to the frequency of operation.  As with the 

capacitor, the behavior of the inductor can be approximated at low and high 

frequencies.  At DC or low frequencies, the impedance of the inductor is also low 

such that it can be treated as a short circuit.  For very high frequencies, the 

impedance of the inductor rises such that it can be treated as an open circuit.  

The voltage drop across the inductor corresponds to the direction of the current 

flow through the component. 
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Because the voltage across an inductor is proportional to the change in current 

through the inductor, the plot of voltage versus time can be determined from the 

plot of current versus time.  Also due to this relationship, it is impossible for an 

inductor to experience an instantaneous current step.  An instantaneous step in 

current would require an instant of infinite voltage across the inductor.  Clearly, 

this is not possible.  Thus, any change in current through the inductor requires a 

finite amount of time to take place. 
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In closing, let’s consider two of the most common, passive component 

arrangements: series impedances and parallel impedances.  Two or more 

components are considered to be in series when they share the same current.  

With discrete components, this can be done intentionally.  The circuit designer 

may choose to do this to minimize the power being consumed by each 

component.  Series impedances may also occur parasitically.  Regardless of 

how they occur, they can be simplified to a single equivalent component to 

facilitate calculations.  For example, resistors in series can be simplified to a 

single component whose total resistance is equal to the sum of the individual 

resistances.  Similarly, inductors in series can be simplified to a single equivalent 

inductor whose total inductance is equal to the sum of the individual 

inductances.  To find the equivalent capacitance for a set of capacitors in series, 

sum the reciprocal of each capacitance and take the inverse. 
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On the other hand, two or more components are considered to be in parallel 

when they share the same voltage drop.  Again, this may occur intentionally or 

unintentionally and they too can be simplified to a single equivalent component 

to facilitate calculations.  In this case, resistors can be combined to a single 

equivalent component by summing the reciprocal of each resistance and taking 

the inverse.  Since parallel resistors are quite common, it’s good to know a 

couple of rules of thumb.  For example, if two resistors of the resistance “R” are 

in parallel, then their equivalent resistance is equal to one half of their individual 

resistance, or “R/2”.  Similarly, the equivalent resistance of two or more parallel 

resistors will always be smaller than the smallest individual resistance. An 

equivalent inductor for parallel inductors can be found using the same equation.  

To find an equivalent capacitor, simply take the sum of the individual 

capacitances. 



That concludes this lesson!  Thanks for your time and please try the quiz. 
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Question 1.  True or False: A capacitor can undergo instant, step changes in 

voltage. The correct answer is false.  Remember the that the equation defining 

the transient behavior of a capacitor is “I equals C dv/dt.”  Since the derivative of 

a step is an impulse and a capacitor cannot pass infinite current, it is also not 

true that a capacitor can undergo instant, step changes in voltage. 
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Question 2. From left to right, the plots below show the impedance versus 

frequency relationship of which components?  The correct answer is “C.”  From 

left to right, the plots describe the impedance versus frequency of a capacitor, 

then a resistor, and finally and inductor.  Remember, the capacitor has an 

impedance that is inversely proportional to frequency; the resistor has an 

impedance that is independent of frequency; and the inductor has an impedance 

that is proportional to frequency. 
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Question 3. Looking in from Vin, what is the equivalent resistance of this resistor 

network?  The correct answer is 15kΩ.  To solve this problem, begin taking 

equivalent impedances from the ground node toward the input.  The two 10kΩ 

resistors are in parallel and have an equivalent resistance of 5kΩ.  This is then 

in series with the 5kΩ, R5 resistor.  Together, this forms a 10kΩ resistance.  

Finally, consider the resistor bridge formed by the four remaining 5kΩ resistors.  

R1 and R2 are in series and form a 10kΩ equivalent resistance.  The same is 

true of R3 and R4.  Taking the equivalent resistance of R1 and R2 along with R3 

and R4, we have two 10kΩ resistors together in parallel.  This leaves us with a 

single 5kΩ resistor equivalent to the combination of R1, R2, R3, and R4.  This can 

be combined in series with the equivalent resistor formed by R5, R6, and R7 

which we found to be 10kΩ.  So overall, we have an equivalent resistance of 

15kΩ. 



That’s all for now!  Thanks again for your time. 

16 



17 


