

Presented by: Joseph Serritella

Prepared by: Joseph Serritella, Daryl Hiser, Ray Ochotorena

OPAMP verification

OPAMP electrical characterization:

- Characterizing the electrical behavior of an integrated circuit is critical during application troubleshooting
 - Non-conformances can be identified by comprehending device-level characteristics in addition to system performance
- OPAMP electrical characterization series will review the following topics:
 - Voltage offset (V_{OS})
 - V_{CM} / Common Mode Rejection Ratio (CMRR)
 - Power Supply Rejection ratio (PSRR)
 - Output swing
 - Output swing
 - Quiescent current
 - Open loop gain (A_{OL})

Prerequisites

Electrical characterization: Output Swing / Slam

- Output swing and slam measurement methods are reviewed
- Following prerequisites are recommended prior to proceeding though the handbook

Prerequisites:

TI-Precision Labs (TIPL) courses:

Op Amps: Input and Output Limitations

Tl.com/output-limitations

Pocket reference:

Training: Analog Engineer's Pocket Reference

ti.com/analogrefguide

Application handbook:

A-B-A: Board Level Troubleshooting

ti.com/board-level-troubleshooting

Simulation tools:

Simulations are presented within the handbook. It is recommended to install TINA-TI

TINA-TI can be downloaded for free on ti.com: Tl.com/tina-ti

OPAMP test loops

Overview:

- Analyzing datasheet parameters may appear a daunting task!
- Multiple datasheet parameters can be derived using various circuits.

False Summing Junction (FSJ):

- Commonly used circuit to measure offset voltage of an amplifier
 - Benefits:
 - Simplistic
 - Stable
 - Small

- Disadvantages:
 - Feedback resistor load in parallel with other added loads
 - Loop drive function of DUT V_{OS}
- Majority of DC parameters determined with 4 resistors!

Measuring opamp specifications:

- VOS: differential input voltage required to force output to mid-supply
- Output swing: can also be measured by using VOC to force the output voltage near the positive or negative supple
- Output control voltage (VOC): Calibrate the out voltage to zero volts

$$V_{oc} = -(V_{out} + VOS(302)) + 2VCM$$

Example:

- V+ = +10V
- V- = -10V
- V_{OUT} = 0V
- $V_{OC} = 0V$ (ideal opamp)

Results:

- $V_{SJ} = 1.01 \text{mV}$
- 1.01mV = (101)Vos = V_{SJ}

Resistor values can be

varied depending on device

$$10\mu V = Vos$$

Output swing - OPA192

Measurement preparation:

- Output swing and output slam are **not the same** as offset voltage (VOS)!
 - Offset voltage is defined when $V_{OUT} = V_{CM} = Mid$ -supply
- Output swing: How close the output voltage of the opamp can reach the positive or negative supply voltage
 - Therefore V_{OUT} =/= Mid-supply, thus VOS is not defined
 - V_{OI} (output low) and V_{OH} (output high) denote a similar spec
- Review data sheet test conditions prior to evaluating output swing
 - Confirm supply voltage, input common mode voltage and output load conditions

Electrical Characteristics: $V_s = \pm 4 \text{ V to } \pm 18 \text{ V } (V_s = +8 \text{ V to } +36 \text{ V})$

	PARAMETER	METER TEST CONDITIONS		MIN	TYP	MAX	UNIT
	Voltage output swing from rail	Positive rail	No load		5	15	- mV
			$R_{LOAD} = 10 \text{ k}\Omega$		95	110	
V _O			$R_{LOAD} = 2 k\Omega$		430	500	
v _o		-	No load		5	15	
			$R_{LOAD} = 10 \text{ k}\Omega$		95	110	
			$R_{LOAD} = 2 k\Omega$		430	500	

*http://www.ti.com/lit/ds/symlink/opa192.pdf

Output swing

Bench setup and measurements:

Output swing positive rail:

- **DUT**: OPA192IDGK
- V + = +12V
- V- = -12V
- V_{force} = 12V
- R_{load} = no load
- Measure V_{OUT}