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• Multiple controllers on the bus means 

there can be more than one device 

trying to claim the bus at the same time 

• The open-drain wired-AND connection 

allows for two devices to try to claim the 

bus without disruptive contention 

• I2C uses clock synchronization and then 

arbitration to determine which controller 

claims the bus 
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• Clock synchronization is done when 

the I2C controllers try to claim the bus 

• Two controllers try to initiate START 

condition near the same time 

• Wired-AND connection; SCL is low if 

any controller pulls SCL low; SCL is 

high only if both controllers are 

setting the line high 
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• SCL synchronization continues when 

the controller devices release SCL 

• All active controllers still need to 

monitor SCL to ensure they are able 

to complete the SCL pulse 

• If another controller has also pulled 

down on SCL, the other controllers 

cannot proceed with the SCL pulse 

and must wait until SCL is released 

• SCL stays low for as long as the 

longest period of time for which SCL 

is pulled low by any controller 
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• Synchronization continues as all 

controllers have released SCL 

high 

• After the rising edge of SCL, all 

controllers pull down on SCL to 

complete the SCL pulse 

• The first controller that completes 

the SCL high time determines the 

high time period of the pulse 
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• SCL continues to be synchronized 

to the same clock with the same 

method 

• SCL clock is generated with its 

low period determined by the 

controller with the longest clock 

low period 

• The high period is determined by 

the controller with the shortest 

clock high period. 
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• Arbitration is done on SDA using a 

synchronized SCL 

• Both controllers transmit data on 

SDA normally, but both controllers 

monitor SDA bit by bit 

• The first controller to transmit a low 

bit, while the other controller 

transmits a high bit wins arbitration 

• The controller that does not win 

arbitration stops transmission and 

waits for the STOP 
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• Target devices may clock stretch 

SCL to slow down I2C 

communications 

• SCL held low for a time period by 

target device, often on ACK pulse 

• controller must monitor SCL and 

extends SCL pulse to accommodate 

target’s clock stretching 

• There is no time limit to the target’s 

clock stretching in the specification 
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• Clock stretching example starts with 

controller sending target address 

• After address sent, responding 

target stretches SCL during ACK 

• Controller monitors SCL and cannot 

proceed to next clock pulse until 

target releases SCL 

• Wired-AND SCL shows stretched 

clock at after address byte sent 

without disrupting communication 
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SDA and SCL I/O Characteristics 

Standard mode Fast mode Fast-mode Plus 
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SDA and SCL I/O Characteristics 

Input and output 

voltage levels 

Output current  
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SDA and SCL Bus Line Characteristics 

Maximum SCL 

frequency 

Bus timing, 

including setup 

and hold times 

Maximum bus 

capacitive load 
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• Mismatched controller and target 

device voltages may cause problems 

in communication or even damage to 

devices 

• The pullup resistor connection 

determines if the output voltage 

mismatch overdrives the input or 

under-drives the input to the other 

device 
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• Controller and pullups set to 3.3V 

• Target device set to 5.0V 

• A high-level input voltage is 

defined as 0.7 ▪ VCC 

• For this example, the pullup only 

goes up to 3.3V, while the target 

device high-level input voltage is 

3.5V based on it’s supply 

• Input does not go high enough to 

ensure correct communication  
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• Controller set to 1.8V 

• Target device and pullups set to 5.0V 

• High-level bus voltage pulls up to 

5.0V, which may be outside the input 

range of the SDA and SCL of the 

controller 
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• Controller and pullups set to 5V 

• Target device set to 3.3V 

• In this example, the target device 

has SDA and SCL pins that are 

tolerant to higher voltages 

• This communication is ok, even if 

the target device SDA and SCL pins 

are raised higher than supply 
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• Voltage level translators are a 

solution to mismatched supplies 

• Requires two sets of pullups, one for 

each voltage level 

• PCA9306 is a common I2C voltage 

level translator 
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• Transition time for I2C determined by 

pullup resistor sizing, total bus 

capacitance, and current sink from 

I2C devices  

• Typical pullup resistors 1kΩ to 10kΩ 

• Lower resistance pullup resistance 

means higher power 

• Higher pullup resistance means lower 

speed 

• Min and max pullup resistance can be 

calculated for optimal performance 
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Maximum rise time for I2C signals 

 

Maximum capacitive load on bus 

 

Digital output voltage low level (VOL) 

Current sink for device I2C 

connections (IOL) 
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SDA, SCL Voltage 

VCC 

GND 

RP min =
(VCC − VOL(max))

IOL
 

VOL = 0.4V 

IOL VOL Minimum pullup resistance based  

on VCC to VOL and the pulldown current IOL 



Pullup Resistor Sizing 

26 

SDA, SCL Voltage 

VCC 

GND 

V t = VCC × 1 − 𝑒
−t
RC  

VIH = 0.7 × VCC =  VCC × 1 − 𝑒
−t2

RPCB  

VIL = 0.3 × VCC =  VCC × 1 − 𝑒
−t1

RPCB  
0.3 • VCC 

0.7 • VCC 

t1 t2 

Maximum pullup resistance based on the 

exponential voltage rise: 

From the digital input low voltage: 

To the digital input high voltage: 
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SDA, SCL Voltage 

VCC 

GND 

tRISE = t2 − t1 = 0.8473 • Rp • Cb 

RP max =
tRISE

0.8473 • Cb
 

0.3 • VCC 

0.7 • VCC 

t1 

Max tRISE 

Solve for the rise time (t2 – t1), 

can be calculated as: 

The maximum pullup resistance can 

be calculated from the maximum rise 

time and the bus capacitance: 

Max bus capacitance 

t2 
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Example: 

Find the minimum and maximum pullup resistance for Fast mode I2C Communication with: 

• Cb = 200 pF and VCC = 3.3V 

 

Solution: 
RP min =

(VCC − VOL(max))

IOL
=

(3.3V − 0.4V)

3 × 10−3A
= 966.667Ω 

RP max =
tRISE

0.8473 • Cb
=

300 × 10−9s

0.8473 • 200 × 10−12F
= 1.77kΩ 

From “I2C Bus Pullup Resistor Calculation”  

By Rajan Arora  (Application Report SLVA689) 
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• Commonly used in computer motherboards for 

power source management 

• Some minor specification differences with I2C in 

voltage levels, sink current, frequency, and timing 

• Added features: 

 Dynamic address allocations 

 35ms timeout to the bus 

 Packet error checking (PEC) with CRC-8 

checksum 

 SMBAlert# 

SMBus - System Management Bus 
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• Variant of SMBus 

• Originally defined by Intel and Duracell 

• Used in digital management of power supplies 

• Many pre-defined domain specific commands 

• Standard command space has many readable and 

writeable device attributes regarding voltage 

current, and power; gives measurements, status, 

and warnings 

PMBus - Power Management Bus 
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• Standardized message-based hardware management 

interface for a computer motherboard or server 

• Run by a Baseboard Management Controller (BMC) or 

Management Controller (MC) 

• Independent of computer's CPU, firmware, and operating 

system. 

• BMC is always running IPMI even when the main system is 

off, allows for remote management of a system 

IPMI – Intelligent Platform Management Interface 



Other Similar Protocols 
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ATCA - Advanced Telecom Computing Architecture 

• Follow-on to Compact PCI (cPCI), used in advanced rack-

mounted telecommunications hardware 

• Includes fault tolerant scheme for thermal management 

 

DDC - Display Data Channel 

• Allows for monitor or display to inform the host about identity and 

capabilities 

• Bidirectional host may control monitor display functions 

 

CBUS compatibility 

• Compatible with reserved I2C address and bus line DLEN 

• No longer used  



Thanks for your time! 
Please try the quiz. 
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1. To prevent bus contention between controllers, I2C uses clock 

synchronization and then arbitration. How is arbitration done between 

controllers? 

a. The first controller to send the START condition is allowed to continue it’s 

communication 

b. The first device to complete the address byte and receive the ACK from the target 

device continues its communication 

c. Clock synchronization decides the controller that wins the arbitration 

d. Contending controllers synchronize clocks and continue communication. The first 

controller to send an SDA low bit that is not matched by the other controller wins 

arbitration 
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1. To prevent bus contention between controllers, I2C uses clock 

synchronization and then arbitration. How is arbitration done between 

controllers? 

a. The first controller to send the START condition is allowed to continue it’s 

communication 

b. The first device to complete the address byte and receive the ACK from the target 

device continues its communication 

c. Clock synchronization decides the controller that wins the arbitration 

d. Contending controllers synchronize clocks and continue communication. The first 

controller to send an SDA low bit that is not matched by the other controller wins 

arbitration 



Quiz: Basics of I2C: Advanced Topics 

2. The PCA9306 is an example of what? 

a. A voltage translator used to bridge devices with two different supply voltages 

b. A system for clock stretching during the ACK from target device after the controller 

sends the I2C address 

c. A communication protocol similar to I2C used for power management 
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Quiz: Basics of I2C: Advanced Topics 

2. The PCA9306 is an example of what? 

a. A voltage translator used to bridge devices with two different supply voltages 

b. A system for clock stretching during the ACK from target device after the controller 

sends the I2C address 

c. A communication protocol similar to I2C used for power management 
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3. Which of the following parameters is not a factor in calculating the minimum 

and maximum values for I2C pullup resistors? 

a. The I2C supply voltage attached to the pullup resistor 

b. The total bus capacitance on the I2C line 

c. Setup and hold times for SDA and SCL 

d. The I2C device sink current for SDA and SCL 

e. The digital input high and digital input low levels for the SDA and SCL lines 
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3. Which of the following parameters is not a factor in calculating the minimum 

and maximum values for I2C pullup resistors? 

a. The I2C supply voltage attached to the pullup resistor 

b. The total bus capacitance on the I2C line 

c. Setup and hold times for SDA and SCL 

d. The I2C device sink current for SDA and SCL 

e. The digital input high and digital input low levels for the SDA and SCL lines 
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Quiz: Basics of I2C: Advanced Topics 



Thanks for your time! 
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Hello, and welcome to our in-depth look at communications with 
precision data converters. In other I2C videos, we describe the some 
of the protocol basics of I2C and use an example to show how you 
might communicate with a precision data converter. With those 
videos, you should be able to understand how I2C works and how to 
read and debug basic system communications.  
 
However, those videos only scratch the surface of the I2C protocol. 
This video will cover some advanced topics of I2C. We won’t go into 
too much depth. However, we’ll introduce some topics that will 
allow you to understand what they are when you come across them. 
This information can be found in the I2C bus specification, and you 
can find more details there. 
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The first I2C topic in this presentation is clock synchronization and 
arbitration between controller devices on the bus. 

2 



In I2C, there may be multiple controllers on the same bus. Because 
of this, there may be two or more devices trying to claim the bus for 
communication at the same time. This requires multiple active 
controllers to resolve which device controls the bus.  
 
I2C uses a method of clock synchronization and arbitration to ensure 
that one controller that gains control and does so without 
compromising its communication. Because I2C uses open-drain 
connections to SDA and SCL, the connections result in a “wired-
AND” connection, where the line gives a logical AND of the device 
outputs. This is helpful in arbitration without disruption to the 
communication. In systems with only one controller, this arbitration 
isn't necessary. 
 
We’ll describe in detail how multiple controllers synchronize clocks 
for I2C communication. We’ll also describe how controllers use 
arbitration to determine which controller wins the bus without 
disruptive contention. 
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To prevent bus contention, clock synchronization is first performed 
using the SCL line and the open-drain connections from the 
controllers on the bus. This wired-AND connection is low if any of 
the controllers pull SCL low. This connection is the logical AND of the 
two controller device’s SCL connection. The output of SCL is high 
only if both controller devices have released the open-drain 
connection high. A truth table of this logical wired-AND is shown in 
the lower right corner. 
 
During a START condition where two controllers are trying to claim 
the bus, there is a high to low transition on SCL. Here is an example 
where two controller devices are trying to claim the bus at or near 
the same time. 
 
Here, controller 1 device initiates a START condition shortly before 
controller device 2 does the same. controller 1 pulls SCL down 
before controller 2. With the wired-AND connection, SCL pulls low 
as soon as controller 1 pulls down on SCL. 
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After the START condition, controller 1 releases SCL to go high. 
However controller 2 is still holding SCL low. Because of the wired-
AND connection, SCL remains low until controller 2 releases the SCL 
high. At the same time, controller 1 is still monitoring SCL and must 
wait for the other controller to release the clock. controller 1 cannot 
advance the SCL pulse until the SCL is available when controller 2 
has released it.  
 
When multiple controllers are competing for the bus, SCL stays low 
for as long as the longest period of time that any controller pulls 
down SCL. Only after all the controllers have released the SCL can 
the line be released high for the serial clock pulse. This synchronizes 
the start of the serial clock for all controllers. 
 
For clock synchronization, each controller device must monitor the 
SCL line and react to cases where the SCL does not match its 
expected SCL output. 
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Similarly, after the start of the serial clock pulse, all the controllers 
pull down on SCL to complete the serial clock pulse. Again, with the 
wired-AND connection, SCL is then pulled down with the first 
controller that responds with pulling down SCL. The first controller 
that completes the SCL high time period determines the high time of 
SCL from the wired-AND connection. 
  

6 



The synchronization of the SCL clock continues for subsequent clock 
pulses between all active controllers. Each SCL clock pulse is 
generated with its LOW period determined by the controller with 
the longest clock LOW period and the HIGH period is determined by 
the controller with the shortest clock HIGH period. 
 
Again, clock synchronization works because the controllers monitor 
each pulse of the SCL line and react to cases where the SCL line does 
not match the state that the controller expects. 
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Now that the serial clocks are synchronized, arbitration is done on 
SDA. Both controllers transmit data normally on SDA, sending their 
communication to the intended target device. Similar to SCL, SDA is 
a wired-AND connection.  
 
Both controllers also monitor SDA for the resulting communication. 
The first controller to transmit a low bit while the other controller 
transmits a high bit wins arbitration. With the wired-AND 
connection, the controller that wins arbitration does not have its 
communication disrupted. The controller device that loses 
arbitration stops its transmission and the controller device that wins 
arbitration continues its communication uninterrupted. 
 
In this method of arbitration, both controllers are transmitting data 
at the same time. The controller that matches the wired-AND result 
for SDA is the controller that wins arbitration. The controller that is 
disrupted by the wired-AND result for SDA stops transmission and 
releases the I2C bus. 
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The next topic in this presentation is clock stretching.  
 
It’s not always the controller that controls the SCL serial clock. In 
some cases the target device can slow down the communication. 
The next set of slides show how target devices can use clock 
stretching to slow things down. 
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In general, the SCL line and therefore the I2C clock rate, is controlled by 
the controller. However, there may be times where the target device is 
unable to comply with the clock rate. The target device may need extra 
time to process a command or send data. In such cases, the target device 
may try to slow down the communication through clock stretching. 
 
After a target device receives a byte of data in transmission, it may hold 
down SCL longer so that the controller is required to adjust the clock. 
This is similar to clock synchronization. The controller monitors SCL and is 
forced to extend the SCL pulse if it determines that SCL is still low after 
the controller has released it. If clock stretching is supported by the 
controller, any SCL pulse can be clock stretched by the target device. 
However, the general implementation of clock stretching is done with 
the SCL pulse around the ACK bit. 
 
According to the I2C specification, there is no time limit to the target 
holding down SCL for clock stretching. Other similar specifications (like 
SMBus) have time limits for how long SCL can be held low. 

10 



Here’s an example of the target device clock stretching SCL. In this 
example, the controller issues a START and sends the target device 
address. 
 
When the target device recognizes the controller is sending the 
proper target address, the target device then begins to ACK the 
address. If the target device needs to slow down communications, it 
can pull down on SCL. This is the only instance the target device can 
control the SCL.  
 
If the controller responds to clock stretching, it monitors SCL and 
sees that SCL remains low even though the controller has released 
SCL. Because of this, the controller cannot continue with the SCL 
pulse until the SCL is released by the target. The controller continues 
to monitor SCL. Once SCL is released high, the controller can then 
continue past the target device’s ACK and continue with the next 
byte transmission. The resulting wired-AND connection of SCL shows 
the SCL stretched. Data transmission is delayed by the target device 
without disrupting communication.  
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The datasheet for every I2C device will have electrical and timing 
specifications that cover the characteristics for the I2C bus. Because 
I2C is a common protocol, these specifications should be matched 
from device to device. This section will discuss the electrical and 
timing characteristics and how they are shown in the I2C 
specification.  
 
We won’t go into detail about each of the specifications, but we’ll 
give an overview of how these specifications are organized. 
Datasheets for I2C devices will cover what you need to know to 
operate our devices. However, you can search out the I2C 
specifications and read more about each of these characteristics. 
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As an example, here we show Table 9 from the I2C specifications. 
This table shows the input/output characteristics for the I2C bus 
lines. First, you can see from the columns that the specifications are 
different for different I2C speed modes. Minimums and maximums 
are listed for standard mode, fast mode, and fast-mode plus. 
Because the devices operate at different speeds, these specifications 
are different to accommodate the differences in voltage and timing. 
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Highlighting some of the parameters, Table 9 gives specifications for 
low level and high level input and output voltages for SCL and SDA. 
This ensures that each I2C bus line has a voltage range that correctly 
transmits and receives high and low levels. This table also gives the 
minimum output current that the device open drains pull down on 
SCL and SDA. 
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Table 10 of the I2C specification gives additional minimums and 
maximums for the SDA and SCL bus timing. The first key parameter gives 
the maximum SCL clock frequency for each of the I2C speed modes. 
Much of the rest of the table gives various setup and hold times for the 
SDA in relation to SCL. There is also timing information for the START and 
STOP conditions. 
 
One last key parameter shows the maximum capacitive load allowed on 
the I2C bus lines. With the high signals based on pullup resistances, the 
load capacitance may determine the speed at which the I2C bus 
communicates. Later in this presentation, we’ll show how this bus 
capacitance can be used to determine a range for the I2C pullup 
resistances. 
 
In whatever I2C devices you use, these SCL and SDA bus line 
characteristics can be found in their respective datasheets. The 
datasheets will give enough of these characteristics to setup the device 
correctly. Again, for further information you can search out the I2C 
specifications and read more about these characteristics 
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Larger systems may have multiple power sources with multiple 
voltages. These different voltages may power different I2C 
controllers and target devices. Here, we’ll talk about voltage level 
translation and how these different I2C voltages may (or may not) 
interact. 
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One common problem with designing large systems is the mixing of 
different voltage levels within the system. For example, what 
happens when the controller and the target device do not run on 
the same voltage? 
 
Mismatched voltages in the supply can disrupt communication or 
even damage a device. The connection of the pullup resistors 
determines if the output voltage of one overdrives or underdrives 
the input of the next device. Several examples can show some of the 
consequences of the mismatch. 
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Here’s one example of supply mismatch with different I2C devices. 
In this example, the controller and the pullups are set to 3.3V, while 
the target device is set to 5.0V. 
 
In the I2C specification, there are minimum and maximum voltages 
required for a digital input voltage to be accurately interpreted as a 
digital high or low. For example, the SDA and SCL are interpreted as 
a digital input low voltage when the input goes below the maximum 
0.3 ▪ VCC. Also, the SDA and SCL are interpreted as a digital input 
high voltage when the input goes above the minimum of 0.7 ▪ VCC. 
This latter specification is important for the mismatched supplies. 
 
With the pullups tied to the lower supply of 3.3V, the resistors are 
never able to pull up higher than the minimum required voltage of 
3.5V. In this case, neither the SDA, nor the SCL are ensured to be 
interpreted as a digital high. This would potentially prevent 
communication between the devices. 
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Here’s another example where the controller is set to 1.8V, but the 
pullups and the target device are set to 5.0V.  
 
In this example, the I2C bus lines are able to be pulled up to 5.0V. 
However, the controller device may not accept voltages that high. If 
the difference between the device voltages are too great, the lower 
voltage device may be susceptible to damage.  
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Here’s an example where the controller and pullups are set to 5V, 
but the target device is set to 3.3V.  
 
The I2C bus lines are able to be pulled up to 5.0V, exceeding the 
target device supply. However, the target device has inputs tolerant 
to higher voltages. This is a feature in some I2C devices. This may 
allow for direct connections between the I2C bus with pullups to the 
higher voltage supply. Check with the device datasheets for this 
possible feature. 
 
The ADS1115 is just one device that has SDA and SCL lines that are 
tolerant to voltages higher than the supply. Looking at the Absolute 
Maximum Table from the datasheet, the maximum digital input 
voltage is 5.5V, regardless of the supply voltage. With this type of 
I2C line, the target device can tolerate pullup voltages higher than 
the supply. This allows for I2C communication between the devices 
even with different supply voltages. 
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With mismatched supply voltages, the best option may be to use a 
special device to bridge the two supplies.  
 
This figure shows an example of using an I2C voltage level translator 
to bridge the communication between two different supply 
voltages. There are two sets of pullups, one for each voltage level. 
As a common voltage translator, the PCA9306 allows for 
communication between different supply levels. 
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Another I2C advanced topic involves the pullup resistances required 
for I2C communication. To ensure that the bus speed is fast enough 
to meet the protocol bus speed, you may need to calculate values 
for the pullup resistances. In this section we’ll show how to calculate 
a minimum and maximum value for the pullup resistances based on 
the I2C specifications. 

22 



With the open-drain connections of SDA and SCL, transitions from 
these lines from high to low and from low to high are dependent on 
bus capacitance, current sink from the device connection, and the 
pullup resistor magnitude.  
 
The normal pullup resistor recommendation is 1kOhms to 10kOhms. 
However, with higher resistances, the I2C communication is slower. 
With lower resistances, the I2C communication requires more 
power. Based on the several different parameters, we can calculate a 
minimum and maximum resistance for the I2C bus speed 
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First, let's look at a table listing parametric characteristics from the 
I2C specifications.  
 
We can focus on the specifications for the Standard mode. It lists the 
maximum rise time for the I2C bus, the maximum capacitive load on 
the bus, and it lists the low level output voltage listed as VOL, which 
are given for different voltage levels for different speed modes of 
I2C. The table also lists the output current sunk by the device, which 
we'll call IOL. We’ll use all of these parameters to help determine the 
pullup resistance values. 
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Here we have an open drain connection to the I2C bus and we show 
the output waveform. The SDA and SCL bus transition low from the 
current pulling from the device. 
 
The positive supply is connected to the bus voltage VCC when the 
device releases the SDA or SCL line. When active, the device drain 
pulls the bus line output to near ground. The output must drop to 
the output low-level voltage VOL.  
 
The device pulls the bus line low with current IOL. Based on this 
current, we can calculate the minimum resistance needed for the 
pullup. If the resistance is smaller, the output current can’t pull the 
output voltage of the bus low enough to be recognized as a digital 
low. This is shown in the  equation in the bottom right: 
 
Rp(min) = (VCC-VOL(max))/IOL 
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Then, the open-drain connection releases the output current, and 
the resistors pull the bus connection high. The bus line output 
waveform shows an exponential rise. As the resistor pulls the 
voltage up from ground, the voltage settles based on the bus 
capacitance (Cb). The maximum pullup resistance is limited by the 
bus capacitance because of the I2C standard rise time specification. 
With a high resistance, the pullup output rises too slowly, and may 
not reach the logical high fast enough.  
 
The equation for the exponential rise over time is shown with the 
pull up resistance. The rise time is based on the transition from the 
digital input low voltage of 0.3 times the supply voltage to the digital 
input high voltage of 0.7 times the supply voltage. 
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From the exponential equations, the rise time can be solved in 
terms of the maximum pullup resistance and the bus capacitance.  
 
Again, the rise time is based on the bus line’s rise time from 0.3 
times VCC to 0.7 times VCC. 
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Using the equations developed over the previous few slides, we can 
calculate the minimum and maximum pullup resistance for a fast mode 
I2C communication bus. In this example, we can calculate the minimum 
and maximum pullup resistance with a 200pF bus capacitance and supply 
voltage of 3.3V. 
 
Solving for the minimum pullup resistance, subtract the output low 
voltage of 0.4V from the supply voltage of 3.3V. Then divide by the 
current pulled by the bus line of 3mA. This results in 967 Ohms. 
 
Then solve for the maximum bus resistance. Take the rise time of 300 
nanoseconds and divide by the quantity of 0.8473 times 200 picoFarads. 
This gives a maximum resistance of 1.77 kOhms. 
 
This may appear to be a narrow range. However, this is because we’ve 
designed the pullup resistor sizing to operate with the high bus 
capacitance of 200pF. If the design could ensure a lower bus capacitance, 
the maximum resistance could be increased, reducing the power 
dissipated on the I2C bus. 
 
For a more detailed description of I2C pullup resistor calculations see 
Application Report SLVA689, “I2C Bus Pullup Resistor Calculation” By 
Rajan Arora. 
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The I2C specification discusses several other communications 
protocols based on I2C. These other protocols may be similar and 
compatible with I2C communication and may be used for specific 
applications. They may also have defined sets of commands and 
application-specific extensions for their systems. 
 
Just as in the I2C specification, we’ll briefly describe these other 
protocols, but we’ll leave it to you to dig deeper into their systems, 
applications, and uses. 
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The first of these similar protocols is the System Management bus or 
SMBus. It is commonly used in servers and computer motherboards 
for power source management. It’s very similar to I2C in the 
communication protocol, and can be understood by an I2C 
controller.  
 
This protocol has some additional features in comparison to I2C. 
First, it can dynamically set addresses, allowing for quick 
communications at the startup of a system. Also it has a 35ms 
timeout on the bus which prevents one device from indefinitely 
tying up the bus. It also has a packet error checking for error 
detection in data communication. There is also an additional line 
called SMBAlert that is used by target devices as an interrupt to tell 
the controller about certain events detected by the target device. 
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PMBus is basically a variant of SMBus defined by Intel and Duracell. 
It is used in the digital management of power supplies. This protocol 
also defines specific commands to retrieve data about voltage, 
current, and power in the system. 
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IPMI is another I2C based protocol used by a baseboard 
management controller or BMC. It uses a standardized message 
based interface for a computer motherboard or server. The BMC is 
always running even when the main system is off. This allows for 
operation, measurement, and remote management of a system. 
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There are several other similar protocols discussed in the I2C 
specifications. 
 
ATCA is a follow-on to Compact PCI and used in rack mounted 
telecom hardware.  
 
DDC is a monitor or display information protocol that is used by 
hosts for control of display functions.  
 
Finally CBUS is another protocol that is derived from I2C. As 
mentioned in the reserved address section, it is no longer used. 
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That concludes this video – thank you for watching! Please try the 
quiz to check your understanding of this video’s content.  
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