
Basics of I2C:
Advanced Topics
TIPL 6104
TI Precision Labs – Digital Communications

Prepared by Joseph Wu

Presented by Alex Smith

1

Basics of I2C – Advanced Topics

2

• Clock Synchronization and Arbitration

• Clock Stretching

• Electrical and Timing Specifications

• Voltage Level Translation

• Pullup Resistor Sizing

• Other Similar Protocols

Clock Synchronization and Arbitration

3

• Multiple controllers on the bus means

there can be more than one device

trying to claim the bus at the same time

• The open-drain wired-AND connection

allows for two devices to try to claim the

bus without disruptive contention

• I2C uses clock synchronization and then

arbitration to determine which controller

claims the bus

SDA

SCL

Controller 1

SDA

SCL

Controller 2

SDA SCL

I2C

Device 1

SDA SCL

I2C

Device 2

VCC

I2C pullup

resistors

If both controllers try to use

the bus at the same time,

there must be a way to

resolve contention without

disrupting communications

Clock Synchronization and Arbitration

4

• Clock synchronization is done when

the I2C controllers try to claim the bus

• Two controllers try to initiate START

condition near the same time

• Wired-AND connection; SCL is low if

any controller pulls SCL low; SCL is

high only if both controllers are

setting the line high

Controller 2

SCL connection

Controller 1

SCL connection

SCL

(Wired-AND)

SCL goes low with the

first controller to pull it low

Controller 1

SCL

Controller 2

SCL

Resulting

SCL

0 0 0

0 1 0

1 0 0

1 1 1

Truth

Table

SCL Synchronization

Clock Synchronization and Arbitration

5

• SCL synchronization continues when

the controller devices release SCL

• All active controllers still need to

monitor SCL to ensure they are able

to complete the SCL pulse

• If another controller has also pulled

down on SCL, the other controllers

cannot proceed with the SCL pulse

and must wait until SCL is released

• SCL stays low for as long as the

longest period of time for which SCL

is pulled low by any controller

Controller 2

SCL connection

Controller 1

SCL connection

SCL

(Wired-AND)

SCL returns high with the

last controller to return it

high

SCL Synchronization

Clock Synchronization and Arbitration

6

• Synchronization continues as all

controllers have released SCL

high

• After the rising edge of SCL, all

controllers pull down on SCL to

complete the SCL pulse

• The first controller that completes

the SCL high time determines the

high time period of the pulse

Controller 2

SCL connection

Controller 1

SCL connection

SCL

(Wired-AND)

Controllers must monitor

SCL, and must keep SCL

high until all other

controllers have released

SCL high

SCL Synchronization

Clock Synchronization and Arbitration

7

• SCL continues to be synchronized

to the same clock with the same

method

• SCL clock is generated with its

low period determined by the

controller with the longest clock

low period

• The high period is determined by

the controller with the shortest

clock high period.

Controller 2

SCL connection

Controller 1

SCL connection

SCL

(Wired-AND)

• • •

• • •

• • •

SCL Synchronization

Clock Synchronization and Arbitration

8

• Arbitration is done on SDA using a

synchronized SCL

• Both controllers transmit data on

SDA normally, but both controllers

monitor SDA bit by bit

• The first controller to transmit a low

bit, while the other controller

transmits a high bit wins arbitration

• The controller that does not win

arbitration stops transmission and

waits for the STOP

Controller 2

SDA connection

Controller 1

SDA connection

SCL

• • •

• • •

• • •

SDA

(Wired-AND) • • •

Controller 1 is low

but controller 2 is high

Wired-AND SDA

reads low

Controller 1 wins

arbitration

1

1

0 0

0 1

1

Controller 2 stops

transmission

1 0 0 1

SDA Arbitration

Basics of I2C – Advanced Topics

9

• Clock Synchronization and Arbitration

• Clock Stretching

• Electrical and Timing Specifications

• Voltage Level Translation

• Pullup Resistor Sizing

• Other Similar Protocols

Clock Stretching

10

• Target devices may clock stretch

SCL to slow down I2C

communications

• SCL held low for a time period by

target device, often on ACK pulse

• controller must monitor SCL and

extends SCL pulse to accommodate

target’s clock stretching

• There is no time limit to the target’s

clock stretching in the specification

Target device

SCL connection

Controller

SCL connection

SCL

(Wired-AND)

Clock Stretching

11

• Clock stretching example starts with

controller sending target address

• After address sent, responding

target stretches SCL during ACK

• Controller monitors SCL and cannot

proceed to next clock pulse until

target releases SCL

• Wired-AND SCL shows stretched

clock at after address byte sent

without disrupting communication

Target device

SCL connection

Controller

SCL connection

SCL

(Wired-AND)

Controller sends START condition

and sends target address

Target device sees its address,

but wants to clock stretch SCL

During ACK, target

device pulls down on

SCL
Controller is forced to hold SCL

high until SCL is released

Resulting wired-AND

SCL is clock stretched

Basics of I2C – Advanced Topics

12

• Clock Synchronization and Arbitration

• Clock Stretching

• Electrical and Timing Specifications

• Voltage Level Translation

• Pullup Resistor Sizing

• Other Similar Protocols

Electrical and Timing Specifications

13

SDA and SCL I/O Characteristics

Standard mode Fast mode Fast-mode Plus

Electrical and Timing Specifications

14

SDA and SCL I/O Characteristics

Input and output

voltage levels

Output current

Electrical and Timing Specifications

15

SDA and SCL Bus Line Characteristics

Maximum SCL

frequency

Bus timing,

including setup

and hold times

Maximum bus

capacitive load

Basics of I2C – Advanced Topics

16

• Clock Synchronization and Arbitration

• Clock Stretching

• Electrical and Timing Specifications

• Voltage Level Translation

• Pullup Resistor Sizing

• Other Similar Protocols

Voltage Level Translation

17

• Mismatched controller and target

device voltages may cause problems

in communication or even damage to

devices

• The pullup resistor connection

determines if the output voltage

mismatch overdrives the input or

under-drives the input to the other

device

SDA

SCL

I2C

Controller

SDA

SCL

I2C Target

Device

VCCA VCCB

???

Voltage Level Translation

18

• Controller and pullups set to 3.3V

• Target device set to 5.0V

• A high-level input voltage is

defined as 0.7 ▪ VCC

• For this example, the pullup only

goes up to 3.3V, while the target

device high-level input voltage is

3.5V based on it’s supply

• Input does not go high enough to

ensure correct communication

SDA

SCL

I2C

Controller

SDA

SCL

I2C Target

Device

3.3V 5.0V

3.3V

VCC = 5.0V

VIH = 0.7•VCC = 3.5V

VIL = 0.3•VCC = 1.5V

VCC = GND

At 3.3V, controller I2C bus

can’t be pulled up high

enough to meet the input

high voltage minimum

(VIL) for the target device

I2C input voltage level

Voltage Level Translation

19

• Controller set to 1.8V

• Target device and pullups set to 5.0V

• High-level bus voltage pulls up to

5.0V, which may be outside the input

range of the SDA and SCL of the

controller

SDA

SCL

I2C

Controller

SDA

SCL

I2C Target

Device

1.8V 5.0V

5.0V

Pullup voltage to 5.0V

may exceed input ratings

for SDA and SCL for this

I2C controller.

Voltage Level Translation

20

• Controller and pullups set to 5V

• Target device set to 3.3V

• In this example, the target device

has SDA and SCL pins that are

tolerant to higher voltages

• This communication is ok, even if

the target device SDA and SCL pins

are raised higher than supply

SDA

SCL

I2C

Controller

SDA

SCL

I2C Target

Device

5V 3.3V

5.0V

SDA, SCL input tolerant

to higher voltages

Example from ADS1115:

VCCB

Voltage Level Translation

21

• Voltage level translators are a

solution to mismatched supplies

• Requires two sets of pullups, one for

each voltage level

• PCA9306 is a common I2C voltage

level translator

z

SDA

SCL

I2C

Controller

SDA

SCL

I2C Target

Device

VCCA VCCB

VCCA

z

I2C Voltage

Level

Translator

PCA9306

VCCB

VCCA

SDA2

SCL2

SDA1

SCL1

Basics of I2C – Advanced Topics

22

• Clock Synchronization and Arbitration

• Clock Stretching

• Electrical and Timing Specifications

• Voltage Level Translation

• Pullup Resistor Sizing

• Other Similar Protocols

Pullup Resistor Sizing

23

SDA

SCL

Controller 1

SDA

SCL

Controller 2

SDA SCL

I2C

Device 1

SDA SCL

I2C

Device 2

VCC

Parasitic bus

capacitance

• Transition time for I2C determined by

pullup resistor sizing, total bus

capacitance, and current sink from

I2C devices

• Typical pullup resistors 1kΩ to 10kΩ

• Lower resistance pullup resistance

means higher power

• Higher pullup resistance means lower

speed

• Min and max pullup resistance can be

calculated for optimal performance

I2C pullup

resistors

Pullup Resistor Sizing

24

Maximum rise time for I2C signals

Maximum capacitive load on bus

Digital output voltage low level (VOL)

Current sink for device I2C

connections (IOL)

Pullup Resistor Sizing

25

SDA, SCL Voltage

VCC

GND

RP min =
(VCC − VOL(max))

IOL

VOL = 0.4V

IOL VOL Minimum pullup resistance based

on VCC to VOL and the pulldown current IOL

Pullup Resistor Sizing

26

SDA, SCL Voltage

VCC

GND

V t = VCC × 1 − 𝑒
−t
RC

VIH = 0.7 × VCC = VCC × 1 − 𝑒
−t2

RPCB

VIL = 0.3 × VCC = VCC × 1 − 𝑒
−t1

RPCB
0.3 • VCC

0.7 • VCC

t1 t2

Maximum pullup resistance based on the

exponential voltage rise:

From the digital input low voltage:

To the digital input high voltage:

Pullup Resistor Sizing

27

SDA, SCL Voltage

VCC

GND

tRISE = t2 − t1 = 0.8473 • Rp • Cb

RP max =
tRISE

0.8473 • Cb

0.3 • VCC

0.7 • VCC

t1

Max tRISE

Solve for the rise time (t2 – t1),

can be calculated as:

The maximum pullup resistance can

be calculated from the maximum rise

time and the bus capacitance:

Max bus capacitance

t2

Pullup Resistor Sizing

28

Example:

Find the minimum and maximum pullup resistance for Fast mode I2C Communication with:

• Cb = 200 pF and VCC = 3.3V

Solution:
RP min =

(VCC − VOL(max))

IOL
=

(3.3V − 0.4V)

3 × 10−3A
= 966.667Ω

RP max =
tRISE

0.8473 • Cb
=

300 × 10−9s

0.8473 • 200 × 10−12F
= 1.77kΩ

From “I2C Bus Pullup Resistor Calculation”

By Rajan Arora (Application Report SLVA689)

Basics of I2C – Advanced Topics

29

• Clock Synchronization and Arbitration

• Clock Stretching

• Electrical and Timing Specifications

• Voltage Level Translation

• Pullup Resistor Sizing

• Other Similar Protocols

Other Similar Protocols

30

• Commonly used in computer motherboards for

power source management

• Some minor specification differences with I2C in

voltage levels, sink current, frequency, and timing

• Added features:

 Dynamic address allocations

 35ms timeout to the bus

 Packet error checking (PEC) with CRC-8

checksum

 SMBAlert#

SMBus - System Management Bus

Other Similar Protocols

31

• Variant of SMBus

• Originally defined by Intel and Duracell

• Used in digital management of power supplies

• Many pre-defined domain specific commands

• Standard command space has many readable and

writeable device attributes regarding voltage

current, and power; gives measurements, status,

and warnings

PMBus - Power Management Bus

Other Similar Protocols

32

• Standardized message-based hardware management

interface for a computer motherboard or server

• Run by a Baseboard Management Controller (BMC) or

Management Controller (MC)

• Independent of computer's CPU, firmware, and operating

system.

• BMC is always running IPMI even when the main system is

off, allows for remote management of a system

IPMI – Intelligent Platform Management Interface

Other Similar Protocols

33

ATCA - Advanced Telecom Computing Architecture

• Follow-on to Compact PCI (cPCI), used in advanced rack-

mounted telecommunications hardware

• Includes fault tolerant scheme for thermal management

DDC - Display Data Channel

• Allows for monitor or display to inform the host about identity and

capabilities

• Bidirectional host may control monitor display functions

CBUS compatibility

• Compatible with reserved I2C address and bus line DLEN

• No longer used

Thanks for your time!
Please try the quiz.

34

Quiz: Basics of I2C: Advanced Topics

35

1. To prevent bus contention between controllers, I2C uses clock

synchronization and then arbitration. How is arbitration done between

controllers?

a. The first controller to send the START condition is allowed to continue it’s

communication

b. The first device to complete the address byte and receive the ACK from the target

device continues its communication

c. Clock synchronization decides the controller that wins the arbitration

d. Contending controllers synchronize clocks and continue communication. The first

controller to send an SDA low bit that is not matched by the other controller wins

arbitration

Quiz: Basics of I2C: Advanced Topics

36

1. To prevent bus contention between controllers, I2C uses clock

synchronization and then arbitration. How is arbitration done between

controllers?

a. The first controller to send the START condition is allowed to continue it’s

communication

b. The first device to complete the address byte and receive the ACK from the target

device continues its communication

c. Clock synchronization decides the controller that wins the arbitration

d. Contending controllers synchronize clocks and continue communication. The first

controller to send an SDA low bit that is not matched by the other controller wins

arbitration

Quiz: Basics of I2C: Advanced Topics

2. The PCA9306 is an example of what?

a. A voltage translator used to bridge devices with two different supply voltages

b. A system for clock stretching during the ACK from target device after the controller

sends the I2C address

c. A communication protocol similar to I2C used for power management

37

Quiz: Basics of I2C: Advanced Topics

2. The PCA9306 is an example of what?

a. A voltage translator used to bridge devices with two different supply voltages

b. A system for clock stretching during the ACK from target device after the controller

sends the I2C address

c. A communication protocol similar to I2C used for power management

38

3. Which of the following parameters is not a factor in calculating the minimum

and maximum values for I2C pullup resistors?

a. The I2C supply voltage attached to the pullup resistor

b. The total bus capacitance on the I2C line

c. Setup and hold times for SDA and SCL

d. The I2C device sink current for SDA and SCL

e. The digital input high and digital input low levels for the SDA and SCL lines

39

Quiz: Basics of I2C: Advanced Topics

3. Which of the following parameters is not a factor in calculating the minimum

and maximum values for I2C pullup resistors?

a. The I2C supply voltage attached to the pullup resistor

b. The total bus capacitance on the I2C line

c. Setup and hold times for SDA and SCL

d. The I2C device sink current for SDA and SCL

e. The digital input high and digital input low levels for the SDA and SCL lines

40

Quiz: Basics of I2C: Advanced Topics

Thanks for your time!

41

© Copyright 2020 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.

Use of this material is subject to TI’s , viewable at TI.com

Hello, and welcome to our in-depth look at communications with
precision data converters. In other I2C videos, we describe the some
of the protocol basics of I2C and use an example to show how you
might communicate with a precision data converter. With those
videos, you should be able to understand how I2C works and how to
read and debug basic system communications.

However, those videos only scratch the surface of the I2C protocol.
This video will cover some advanced topics of I2C. We won’t go into
too much depth. However, we’ll introduce some topics that will
allow you to understand what they are when you come across them.
This information can be found in the I2C bus specification, and you
can find more details there.

1

The first I2C topic in this presentation is clock synchronization and
arbitration between controller devices on the bus.

2

In I2C, there may be multiple controllers on the same bus. Because
of this, there may be two or more devices trying to claim the bus for
communication at the same time. This requires multiple active
controllers to resolve which device controls the bus.

I2C uses a method of clock synchronization and arbitration to ensure
that one controller that gains control and does so without
compromising its communication. Because I2C uses open-drain
connections to SDA and SCL, the connections result in a “wired-
AND” connection, where the line gives a logical AND of the device
outputs. This is helpful in arbitration without disruption to the
communication. In systems with only one controller, this arbitration
isn't necessary.

We’ll describe in detail how multiple controllers synchronize clocks
for I2C communication. We’ll also describe how controllers use
arbitration to determine which controller wins the bus without
disruptive contention.

3

To prevent bus contention, clock synchronization is first performed
using the SCL line and the open-drain connections from the
controllers on the bus. This wired-AND connection is low if any of
the controllers pull SCL low. This connection is the logical AND of the
two controller device’s SCL connection. The output of SCL is high
only if both controller devices have released the open-drain
connection high. A truth table of this logical wired-AND is shown in
the lower right corner.

During a START condition where two controllers are trying to claim
the bus, there is a high to low transition on SCL. Here is an example
where two controller devices are trying to claim the bus at or near
the same time.

Here, controller 1 device initiates a START condition shortly before
controller device 2 does the same. controller 1 pulls SCL down
before controller 2. With the wired-AND connection, SCL pulls low
as soon as controller 1 pulls down on SCL.

4

After the START condition, controller 1 releases SCL to go high.
However controller 2 is still holding SCL low. Because of the wired-
AND connection, SCL remains low until controller 2 releases the SCL
high. At the same time, controller 1 is still monitoring SCL and must
wait for the other controller to release the clock. controller 1 cannot
advance the SCL pulse until the SCL is available when controller 2
has released it.

When multiple controllers are competing for the bus, SCL stays low
for as long as the longest period of time that any controller pulls
down SCL. Only after all the controllers have released the SCL can
the line be released high for the serial clock pulse. This synchronizes
the start of the serial clock for all controllers.

For clock synchronization, each controller device must monitor the
SCL line and react to cases where the SCL does not match its
expected SCL output.

5

Similarly, after the start of the serial clock pulse, all the controllers
pull down on SCL to complete the serial clock pulse. Again, with the
wired-AND connection, SCL is then pulled down with the first
controller that responds with pulling down SCL. The first controller
that completes the SCL high time period determines the high time of
SCL from the wired-AND connection.

6

The synchronization of the SCL clock continues for subsequent clock
pulses between all active controllers. Each SCL clock pulse is
generated with its LOW period determined by the controller with
the longest clock LOW period and the HIGH period is determined by
the controller with the shortest clock HIGH period.

Again, clock synchronization works because the controllers monitor
each pulse of the SCL line and react to cases where the SCL line does
not match the state that the controller expects.

7

Now that the serial clocks are synchronized, arbitration is done on
SDA. Both controllers transmit data normally on SDA, sending their
communication to the intended target device. Similar to SCL, SDA is
a wired-AND connection.

Both controllers also monitor SDA for the resulting communication.
The first controller to transmit a low bit while the other controller
transmits a high bit wins arbitration. With the wired-AND
connection, the controller that wins arbitration does not have its
communication disrupted. The controller device that loses
arbitration stops its transmission and the controller device that wins
arbitration continues its communication uninterrupted.

In this method of arbitration, both controllers are transmitting data
at the same time. The controller that matches the wired-AND result
for SDA is the controller that wins arbitration. The controller that is
disrupted by the wired-AND result for SDA stops transmission and
releases the I2C bus.

8

The next topic in this presentation is clock stretching.

It’s not always the controller that controls the SCL serial clock. In
some cases the target device can slow down the communication.
The next set of slides show how target devices can use clock
stretching to slow things down.

9

In general, the SCL line and therefore the I2C clock rate, is controlled by
the controller. However, there may be times where the target device is
unable to comply with the clock rate. The target device may need extra
time to process a command or send data. In such cases, the target device
may try to slow down the communication through clock stretching.

After a target device receives a byte of data in transmission, it may hold
down SCL longer so that the controller is required to adjust the clock.
This is similar to clock synchronization. The controller monitors SCL and is
forced to extend the SCL pulse if it determines that SCL is still low after
the controller has released it. If clock stretching is supported by the
controller, any SCL pulse can be clock stretched by the target device.
However, the general implementation of clock stretching is done with
the SCL pulse around the ACK bit.

According to the I2C specification, there is no time limit to the target
holding down SCL for clock stretching. Other similar specifications (like
SMBus) have time limits for how long SCL can be held low.

10

Here’s an example of the target device clock stretching SCL. In this
example, the controller issues a START and sends the target device
address.

When the target device recognizes the controller is sending the
proper target address, the target device then begins to ACK the
address. If the target device needs to slow down communications, it
can pull down on SCL. This is the only instance the target device can
control the SCL.

If the controller responds to clock stretching, it monitors SCL and
sees that SCL remains low even though the controller has released
SCL. Because of this, the controller cannot continue with the SCL
pulse until the SCL is released by the target. The controller continues
to monitor SCL. Once SCL is released high, the controller can then
continue past the target device’s ACK and continue with the next
byte transmission. The resulting wired-AND connection of SCL shows
the SCL stretched. Data transmission is delayed by the target device
without disrupting communication.

11

The datasheet for every I2C device will have electrical and timing
specifications that cover the characteristics for the I2C bus. Because
I2C is a common protocol, these specifications should be matched
from device to device. This section will discuss the electrical and
timing characteristics and how they are shown in the I2C
specification.

We won’t go into detail about each of the specifications, but we’ll
give an overview of how these specifications are organized.
Datasheets for I2C devices will cover what you need to know to
operate our devices. However, you can search out the I2C
specifications and read more about each of these characteristics.

12

As an example, here we show Table 9 from the I2C specifications.
This table shows the input/output characteristics for the I2C bus
lines. First, you can see from the columns that the specifications are
different for different I2C speed modes. Minimums and maximums
are listed for standard mode, fast mode, and fast-mode plus.
Because the devices operate at different speeds, these specifications
are different to accommodate the differences in voltage and timing.

13

Highlighting some of the parameters, Table 9 gives specifications for
low level and high level input and output voltages for SCL and SDA.
This ensures that each I2C bus line has a voltage range that correctly
transmits and receives high and low levels. This table also gives the
minimum output current that the device open drains pull down on
SCL and SDA.

14

Table 10 of the I2C specification gives additional minimums and
maximums for the SDA and SCL bus timing. The first key parameter gives
the maximum SCL clock frequency for each of the I2C speed modes.
Much of the rest of the table gives various setup and hold times for the
SDA in relation to SCL. There is also timing information for the START and
STOP conditions.

One last key parameter shows the maximum capacitive load allowed on
the I2C bus lines. With the high signals based on pullup resistances, the
load capacitance may determine the speed at which the I2C bus
communicates. Later in this presentation, we’ll show how this bus
capacitance can be used to determine a range for the I2C pullup
resistances.

In whatever I2C devices you use, these SCL and SDA bus line
characteristics can be found in their respective datasheets. The
datasheets will give enough of these characteristics to setup the device
correctly. Again, for further information you can search out the I2C
specifications and read more about these characteristics

15

Larger systems may have multiple power sources with multiple
voltages. These different voltages may power different I2C
controllers and target devices. Here, we’ll talk about voltage level
translation and how these different I2C voltages may (or may not)
interact.

16

One common problem with designing large systems is the mixing of
different voltage levels within the system. For example, what
happens when the controller and the target device do not run on
the same voltage?

Mismatched voltages in the supply can disrupt communication or
even damage a device. The connection of the pullup resistors
determines if the output voltage of one overdrives or underdrives
the input of the next device. Several examples can show some of the
consequences of the mismatch.

17

Here’s one example of supply mismatch with different I2C devices.
In this example, the controller and the pullups are set to 3.3V, while
the target device is set to 5.0V.

In the I2C specification, there are minimum and maximum voltages
required for a digital input voltage to be accurately interpreted as a
digital high or low. For example, the SDA and SCL are interpreted as
a digital input low voltage when the input goes below the maximum
0.3 ▪ VCC. Also, the SDA and SCL are interpreted as a digital input
high voltage when the input goes above the minimum of 0.7 ▪ VCC.
This latter specification is important for the mismatched supplies.

With the pullups tied to the lower supply of 3.3V, the resistors are
never able to pull up higher than the minimum required voltage of
3.5V. In this case, neither the SDA, nor the SCL are ensured to be
interpreted as a digital high. This would potentially prevent
communication between the devices.

18

Here’s another example where the controller is set to 1.8V, but the
pullups and the target device are set to 5.0V.

In this example, the I2C bus lines are able to be pulled up to 5.0V.
However, the controller device may not accept voltages that high. If
the difference between the device voltages are too great, the lower
voltage device may be susceptible to damage.

19

Here’s an example where the controller and pullups are set to 5V,
but the target device is set to 3.3V.

The I2C bus lines are able to be pulled up to 5.0V, exceeding the
target device supply. However, the target device has inputs tolerant
to higher voltages. This is a feature in some I2C devices. This may
allow for direct connections between the I2C bus with pullups to the
higher voltage supply. Check with the device datasheets for this
possible feature.

The ADS1115 is just one device that has SDA and SCL lines that are
tolerant to voltages higher than the supply. Looking at the Absolute
Maximum Table from the datasheet, the maximum digital input
voltage is 5.5V, regardless of the supply voltage. With this type of
I2C line, the target device can tolerate pullup voltages higher than
the supply. This allows for I2C communication between the devices
even with different supply voltages.

20

With mismatched supply voltages, the best option may be to use a
special device to bridge the two supplies.

This figure shows an example of using an I2C voltage level translator
to bridge the communication between two different supply
voltages. There are two sets of pullups, one for each voltage level.
As a common voltage translator, the PCA9306 allows for
communication between different supply levels.

21

Another I2C advanced topic involves the pullup resistances required
for I2C communication. To ensure that the bus speed is fast enough
to meet the protocol bus speed, you may need to calculate values
for the pullup resistances. In this section we’ll show how to calculate
a minimum and maximum value for the pullup resistances based on
the I2C specifications.

22

With the open-drain connections of SDA and SCL, transitions from
these lines from high to low and from low to high are dependent on
bus capacitance, current sink from the device connection, and the
pullup resistor magnitude.

The normal pullup resistor recommendation is 1kOhms to 10kOhms.
However, with higher resistances, the I2C communication is slower.
With lower resistances, the I2C communication requires more
power. Based on the several different parameters, we can calculate a
minimum and maximum resistance for the I2C bus speed

23

First, let's look at a table listing parametric characteristics from the
I2C specifications.

We can focus on the specifications for the Standard mode. It lists the
maximum rise time for the I2C bus, the maximum capacitive load on
the bus, and it lists the low level output voltage listed as VOL, which
are given for different voltage levels for different speed modes of
I2C. The table also lists the output current sunk by the device, which
we'll call IOL. We’ll use all of these parameters to help determine the
pullup resistance values.

24

Here we have an open drain connection to the I2C bus and we show
the output waveform. The SDA and SCL bus transition low from the
current pulling from the device.

The positive supply is connected to the bus voltage VCC when the
device releases the SDA or SCL line. When active, the device drain
pulls the bus line output to near ground. The output must drop to
the output low-level voltage VOL.

The device pulls the bus line low with current IOL. Based on this
current, we can calculate the minimum resistance needed for the
pullup. If the resistance is smaller, the output current can’t pull the
output voltage of the bus low enough to be recognized as a digital
low. This is shown in the equation in the bottom right:

Rp(min) = (VCC-VOL(max))/IOL

25

Then, the open-drain connection releases the output current, and
the resistors pull the bus connection high. The bus line output
waveform shows an exponential rise. As the resistor pulls the
voltage up from ground, the voltage settles based on the bus
capacitance (Cb). The maximum pullup resistance is limited by the
bus capacitance because of the I2C standard rise time specification.
With a high resistance, the pullup output rises too slowly, and may
not reach the logical high fast enough.

The equation for the exponential rise over time is shown with the
pull up resistance. The rise time is based on the transition from the
digital input low voltage of 0.3 times the supply voltage to the digital
input high voltage of 0.7 times the supply voltage.

26

From the exponential equations, the rise time can be solved in
terms of the maximum pullup resistance and the bus capacitance.

Again, the rise time is based on the bus line’s rise time from 0.3
times VCC to 0.7 times VCC.

27

Using the equations developed over the previous few slides, we can
calculate the minimum and maximum pullup resistance for a fast mode
I2C communication bus. In this example, we can calculate the minimum
and maximum pullup resistance with a 200pF bus capacitance and supply
voltage of 3.3V.

Solving for the minimum pullup resistance, subtract the output low
voltage of 0.4V from the supply voltage of 3.3V. Then divide by the
current pulled by the bus line of 3mA. This results in 967 Ohms.

Then solve for the maximum bus resistance. Take the rise time of 300
nanoseconds and divide by the quantity of 0.8473 times 200 picoFarads.
This gives a maximum resistance of 1.77 kOhms.

This may appear to be a narrow range. However, this is because we’ve
designed the pullup resistor sizing to operate with the high bus
capacitance of 200pF. If the design could ensure a lower bus capacitance,
the maximum resistance could be increased, reducing the power
dissipated on the I2C bus.

For a more detailed description of I2C pullup resistor calculations see
Application Report SLVA689, “I2C Bus Pullup Resistor Calculation” By
Rajan Arora.

28

The I2C specification discusses several other communications
protocols based on I2C. These other protocols may be similar and
compatible with I2C communication and may be used for specific
applications. They may also have defined sets of commands and
application-specific extensions for their systems.

Just as in the I2C specification, we’ll briefly describe these other
protocols, but we’ll leave it to you to dig deeper into their systems,
applications, and uses.

29

The first of these similar protocols is the System Management bus or
SMBus. It is commonly used in servers and computer motherboards
for power source management. It’s very similar to I2C in the
communication protocol, and can be understood by an I2C
controller.

This protocol has some additional features in comparison to I2C.
First, it can dynamically set addresses, allowing for quick
communications at the startup of a system. Also it has a 35ms
timeout on the bus which prevents one device from indefinitely
tying up the bus. It also has a packet error checking for error
detection in data communication. There is also an additional line
called SMBAlert that is used by target devices as an interrupt to tell
the controller about certain events detected by the target device.

30

PMBus is basically a variant of SMBus defined by Intel and Duracell.
It is used in the digital management of power supplies. This protocol
also defines specific commands to retrieve data about voltage,
current, and power in the system.

31

IPMI is another I2C based protocol used by a baseboard
management controller or BMC. It uses a standardized message
based interface for a computer motherboard or server. The BMC is
always running even when the main system is off. This allows for
operation, measurement, and remote management of a system.

32

There are several other similar protocols discussed in the I2C
specifications.

ATCA is a follow-on to Compact PCI and used in rack mounted
telecom hardware.

DDC is a monitor or display information protocol that is used by
hosts for control of display functions.

Finally CBUS is another protocol that is derived from I2C. As
mentioned in the reserved address section, it is no longer used.

33

That concludes this video – thank you for watching! Please try the
quiz to check your understanding of this video’s content.

34

35

36

37

38

39

40

41

42

	slides-i2c-advanced-topics
	notes-i2c-advanced-topics

