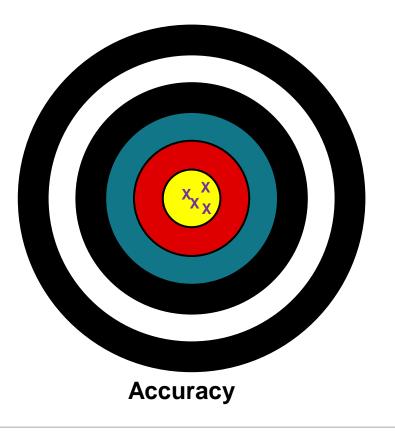
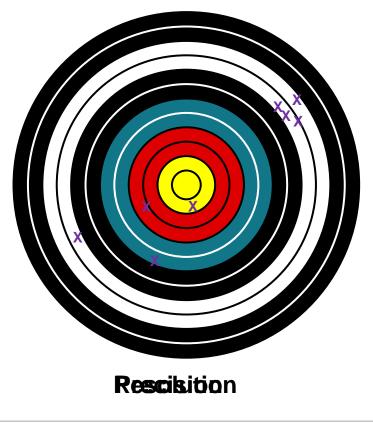
General Challenges: Designing for Accuracy TI Precision Labs – Temperature Sensors

Presented by Daniel Mar

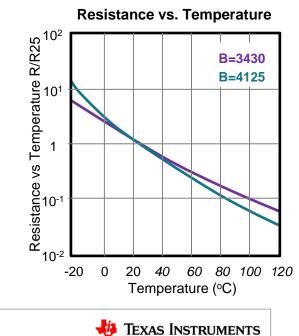

1

Outline


- 1. Understand accuracy
- 2. NTC Accuracy:
 - Understanding Tolerance and Beta
 - Additional error sources
- 3. IC Temperature Sensors Accuracy
- 4. Designing for accuracy
 - Example: Measuring Ambient Air Temperature

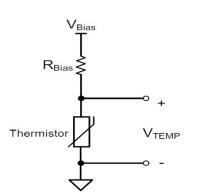
VS

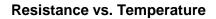
NTC Thermistor Accuracy

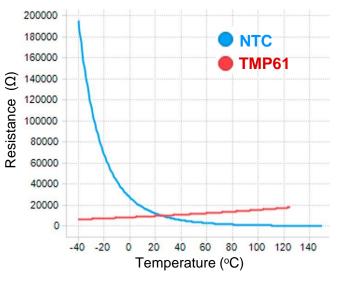

Parameter	Value	
Resistance value at 25 °C	10,000 Ohms	
Tolerance on R25-value	1%	
B25/85-value	3430 to 4125 K	

1% tolerance π 1% measurement accuracy

1% tolerance = 1% nominal resistance (at $25^{\circ}C$)


Beta describes the shape of the thermistors curve Variability in beta will drive additional inaccuracy away from 25°C



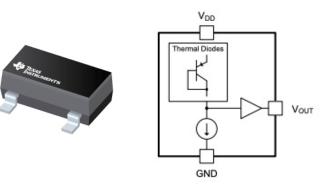


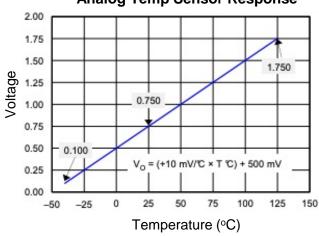
Additional Thermistor Error Sources

- Thermistor isn't the only component
 - R_{Bias} : Tolerance & Drift
 - V_{Bias}: Noise
 - ADC: LSB
 - ADC: VREF
 - Amplifier (optional)
 - Vcc:

- Linearization error
- Quantization error
- Self-heating

5




IC Temperature Sensors

• Defined Accuracy:

Accuracy	Typical	Max
0°C to 70°C	0.5°C	1°C
-40°C to 150°C	0.5°C	2°C

- Typical: Expected accuracy
- Max: Worse case accuracy
- Dramatically reduces linearization and quantization error compared to NTC
- · No external components contributing to error
 - Except for ADC if selecting analog output temp sensor
- Minimal self-heating (<5uW with integrated ADC)

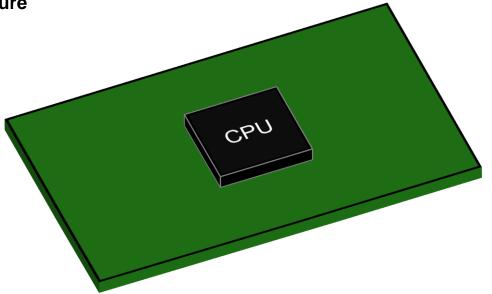
Optimizing Layout:

Crucial to achieving an accurate measurement and reducing thermal response time

1. Measurement Objective

• Layout according to objective (ambient air, another component on PCB, body temperature...)

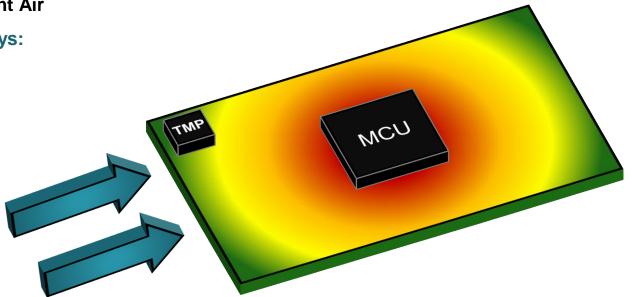
2. Understand the thermal pathways:


- Heat gain/loss to other components
- · Heat gain/loss to surrounding air and airflow around the sensor
- Radiative Heat Sources
- 3. Reduce thermal resistance to objective and increase thermal resistance to other sources
 - Placing sensor closer to the target, and away from other heat sources
 - Adding or widening metal traces to improve thermal connection
- 4. Reduce thermal mass
 - Improves thermal response time: avoiding lag between the target's temperature and the sensor reaching reaching equilibrium.

Example

Measurement Objective: Ambient Air Temperature Understand the thermal pathways: Thermal resistance

Thermal mass


Example

Measurement Objective: Ambient Air Understand the thermal pathways:

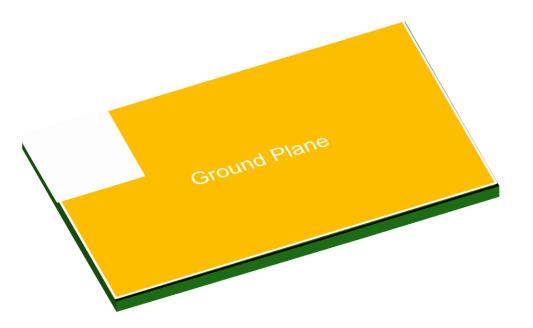
- Heat Sources
- Air Flow

Thermal resistance

Thermal mass

Example

Measurement Objective: Ambient Air Understand the thermal pathways:


- Heat Sources
- Air Flow

Thermal resistance

- Conduction thru traces (narrow)
- Conduction thru PCB

Thermal mass

Minimize mass of sensor and PCB

