Introduction to OpenCL on Ti
Embedded Processors

% TEXAS INSTRUMENTS

Agenda

* OpenCL Overview
 Why and When to Use OpenCL on Tl Embedded Processors
* Processor SDK OpenCL Examples

e Tl Design Example Code Walkthrough

% TEXAS INSTRUMENTS

OpenCL Overview

Introduction to OpenCL

W& TEXAS INSTRUMENTS

OpenCL Parallel Language KHRCSONOS.

GROWUP

for HEte rogeneous MOdEI Motto Open standards for graphics,

media and parallel
computation

OpenCL - Portable Heterogeneous Computing

Formation 2000
Portable Heterogeneous programming of diverse compute resources
g prog . p Type Consortium
« Targeting supercomputers -= embedded systems -= mobile devices Purpose Creating open standards to

enable the authoring and
acceleration of graphics, rich
media and parallel
computation on a wide variety

One code tree can be executed on CPUs, GPUs, D5Ps, FPGA and
hardware

« Dynamically interrogate system load and balance work across _
i of platforms and devices
available processors

Headquarters Beaverton, Oregon, USA
Coordinates 45508407 -122.834305

President Mail Trevett

OpenCL = Two APls and Kernel language

= [Platform Layer AP to query, select and initialize compute devices
« T Runtime APl to build and execute kernels across multiple devices Website www_khronos.org &

* The content of this slide originates from the OpenCL standards body Khronos.
e AMS57x has the ARM Cortex-A15 as a host, and DSP cores as accelerators.
* The Tl OpenCL implementation is compliant with OpenCL 1.1

% TEXAS INSTRUMENTS

Benefits of Using OpenCL on Tl Processors

e Easy porting between devices

e No need to understand memory architecture

e No need to worry about MPAX and MMU

e No need to worry about coherency

e No need to build/configure/use IPC between ARM and DSP

e No need to be an expert in DSP code, architecture, or optimization

% TEXAS INSTRUMENTS

OpenCL Platform Model

Host
Compute Compute
Device Device
Compute unit Compute unit Compute unit Compute unit Compute unit Compute unit
Multiple processing Multiple processing Multiple processing Multiple processing Multiple processing Multiple processing
elements elements elements elements elements elements

e A hostis connected to one or more OpenCL compute devices.
e An OpenCL compute device is a collection of one or more compute units.
e Each compute unit may have multiple processing elements.

% TEXAS INSTRUMENTS

OpenCL Tl Platform Model

e ARM Cortex-A15 is the host: Commands are submitted from the host to the OpenCL devices (execution and
memory move).

e All C66x DSP CorePacs are OpenCL compute devices. Each DSP core is a compute unit.
An OpenCL device is viewed by the OpenCL programmer as a single virtual processor. This means that the

programmer does not need to know how many cores are in the device. OpenCL runtime efficiently divides the
total processing effort across the cores.

NOTE: AM57x and 66K2H12 have the same OpenCL code.

66AK2H12
Sitara® AM57x Processor KeyStone Il Multicore DSP + ARM Processor

- pa p=
? _ —— (&~ -
Y o i "X I » ce § * B

AR & R C66 Al

i,

«< - & Y N I EEE]
ARM A15 C66x DSP ARI : «cBE «=E@

ARM A15 C66x DSP C66x DSP

Multicore Shared Memory Multicore Shared Memory

OpenCL Applications Model

Host Code
C/C++

Serial execution
Executes om the
host

Data Commands

‘Executian Commands’

Device Code
OpenCLC
Parallel execution
Executes on the multiple
devices

Serial Code

Parallel Code

Serial Code

Parallel Code

Host

Multiple DSP
cores

Host

Multiple DSP
cores

Execution Model

Memory Model

Platform Model

Wi TEXAS INSTRUMENTS

OpenCL Execution Model

© Copyright Khronos Group, 2010

Work items => Work group

Context
Define device and state

Processing Algorithm
One or more kernel(s)

Work Group

Work Item

|

Host

Compute Device
One or more Compute Unit(s)

Compute Unit
One or more Compute Element(s)

Compute (Processing)
Element

|

% TEXAS INSTRUMENTS

OpenCL Memory Model

e Private Memory

— Per work-item Work-Item Work-Item Work-ltem Work-Item

Private Private Private Private
Memory Memory Memory Memory

e Local Memory

— Shared within a workgroup, local to a compute unit (core) Local Memory Local Memory

Workegro Workgro
e Global/Constant Memory group group

— Shared across all compute units (cores) in a compute device

Global/Constant Memory

* Host Memory Compute Device
— Attached to the Host CPU
— Can be distinct from global memory
e Read / Write buffer model
— Can be same as global memory

* Map / Unmap buffer model Memory management is explicit;

Commands move data from
host -> global -> local and back.

Host Memory

Host

. TEXAS INSTRUMENTS
© Copyright Khronos Group, 2009 #

OpenCL Execution Model

Definitions

Context
Device
Command queue
Global buffers

Build Kernels

Get source from file (or part of the code) and compile it at run-time
OR
Get binaries, either as stand-alone .out or from a library

Manipulate Memory & Buffers

Move data and define local memory

Execute
Dispatch all work items

% TEXAS INSTRUMENTS

Simple Function Code Walkthrough

The OpenCL include file
$define CL ENWABLE EXCEPTIONS <« CL_ENABLE_EXCEPTIONS
Finclude <CL/cl.hpp> enables C++ class checking.

finclude <iostream:-
#include <cstdlib»
nsing namespace cl;

nsing namespace std:

This string defines the kernel.

const char * kernStr = "kernel void set(global char* hpf)" < It will be compiled for the DSP and runs on
"t Rmfloet_global 1d(0)] = '0'+ core num(); }7; the DSP. The kernel name is set.
const int size = H
const int wgsize = H
cl_char ary [size]: «¢ The ary array is defined in the host memory.
_ _ buf is defined with a pointer to ary, which is
int main{int argc, char *argv[]) .
=1 buffer data that is already allocated by the
memset (ary, O, size): application.
try
= {
Context context (CL_DEVICE TYFE ACCELERATOR)
std: :vector<Device> devices = context.getInfo<CL CONTEXT DEVICES=():
Buffer buf (context, CL MEM WRITE ONLY|CL MEM USE HOST PTR, size, &ary):

Wi TEXAS INSTRUMENTS

Simple Function Code Walkthrough

int main{int argc, char *argv[])

i
memset (ary, 0, size): Construct context
CL_DEVICE_TYPE_ACCELERATOR is DSP.
try This tells OpenCL the architecture of the
{ < compute device. getinfo returns
ontes: ontext (CL. DEVICE TYPE ACCELERATOR) ;
i R T N S information about the device or devices.
Ztd: ivector<Devicer> devices = context.getInfo<CL CONTEXT DEVICES>({) ;
Buffer buf (context, CL MEM WRITE ONLY|CL MEM USE HOST PTR, size, &ary):
Pragram:|: Sources source (1, make pair(kern5Str, strlen(kernsStr))) ° Identify where the kernel(s) is defined.
Program program = Brogram{context, s=source); < e Associate the program with the kernel
program.build{devices) ; . Prog .)
e Build the program for the devices
CommandQueue { (context, devices[0]) using the right code generation tools.
Kernel E (program, } X .
X.sethrg (0, buf): 4—7 Def!ne a queue to the device. .
* Define what kernel is sent to the device
0. engueuelDRangeRernel (B, HullBange, NDRange (size), HDEange (wgsize}); and set the list of arguments (onIy onein

Q.finizsh():

this example).

The queue is connected to the device and
the kernel is compiled and set. Start
execution by calling the enqueue function.
NDRange class provides the dimensions.

% TEXAS INSTRUMENTS

Why and When to Use OpenCL

Introduction to OpenCL

% TEXAS INSTRUMENTS

Using OpenCL on Tl DSP Devices

e HPC machines with large numbers of computational units — no issue. Use OpenCL or
CUDA or similar.

e For devices like 66AK2H12, where there are 4 ARM A15 cores and 8 DSP C66x cores:
— 8 DSPs process many signal-processing algorithms.
— Some of the ARM cores can be on a separate compute device.
e Not supported currently

e Rule of thumb: Use OpenCL when high processing power is needed. Compare it to the
overhead associated with dispatching DSP execution.

— The example NULL (from the release examples that are discussed later) provides the
overhead that is associated with execution of null program by the DSP.

% TEXAS INSTRUMENTS

Using OpenCL on Tl Sitara Devices

e For devices like AM57x where there is 1-2 ARM (1.5G) cores and 1-2 DSP C66x (600 MHZ) cores:
— ARM Cortex-A15 is high-performance processor.
e But it is not as efficient as DSP for some algorithms.

— Consider the overhead that is associated with building the OpenCL structure and the run-time
compiling of the kernel.

e There is directive that keeps the previous compiled binaries in cache between calls.

e Rule of thumb ... Use OpenCL when the following are true:

— The same kernel runs many (infinite) times (the overhead is negligible) and the ARM can
execute other functions at the same time.

— Kernel involves complex processing algorithms, especially if real-time is a consideration.

e Benchmark your code with and without OpenCL and compare.

% TEXAS INSTRUMENTS

Processor SDK OpenCL Examples

Introduction to OpenCL

% TEXAS INSTRUMENTS

OpenCL in Processor SDK Linux Release

e OpenCL implementation is part of the Processor SDK

Linux perspective.

e Tl standard file system has several OpenCL examples:

/usr/shared/ti1/examples/opencl

% TEXAS INSTRUMENTS

OpenCL Examples
in Processor SDK
Linux File System

root@am57xx-evm:/usr/share/ti/examples/opencl# Is -ltr

—rwWXr-Xr-x
—rwWXr-Xr-xX
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

drwxr-xr-x

1

N N N DN N NN NN DM DNMNDNM DN P

root
root
root
root
root
root
root
root
root
root
root
root
root
root

root

root
root
root
root
root
root
root
root
root
root
root
root
root
root

root

2450

548
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

26
26
26
26
26
26
26
26
26
26
26
26
26
26
26

12:30
12:30
12:55
12:55
12:55
12:55
12:55
12:55
12:55
12:55
12:55
12:55
12:55
12:55
12:55

make.inc
Makefile
vecadd

simple
platforms
ooo_callback
offline_embed
offline

null

matmpy
float_compute
edmamgr
dsplib_fft
ccode

buffer

% TEXAS INSTRUMENTS

Executing OpenCL Examples: ccode

root@am57xx-evm
root@am57xx-evm
root@am57xx-evm

-rW-r—--r—-- 1
-rW-r—--r—-- 1
-rW-r—--r—-- 1
-rW-r—--r—-- 1
-rwW-r—--r—-- 1
-rW-r—--r—-- 1
—rWXr-Xr-X 1

root@ams57xx-evm

root
root
root
root
root
root
root

root
root
root
root
root
root
root

2107
377656
6544
6376
2036
171
22524

-/usr/share/ti/examples/opencl#
:/usr/share/ti/examples/opencl# cd ccode

-/usr/share/ti/examples/opencl/ccode# Is -1tr
12:

Aug
Aug
Aug
Aug
Aug
Aug
Aug

26
26
26
26
26
26
26

[540.955345] NET: Registered protocol family 41

Success!

12

12

root@ams57xx-evm:/usr/share/ti/examples/opencl/ccode#

30 oclwrapper.cl

30 main.o
12:
12:

30 main.cpp
30 ccode.obj

30 ccode.c
12:
12:
-/usr/share/ti/examples/opencl/ccode#

30 Makefile
30 ccode

_/ccode

% TEXAS INSTRUMENTS

Executing OpenCL Examples: vecadd

root@ams57xx-evm:/usr/share/ti/examples/opencl/ccode# cd ../vecadd
root@ams57xx-evm:-/usr/share/ti/examples/opencl/vecadd# Is

Makefile main_map_prof.cpp main_prof.cpp
main.cpp main_md.cpp vecadd
main.o main_md.o vecadd md

root@ams57xx-evm:-/usr/share/ti/examples/opencl/vecadd# ./vecadd
DEVICE: Tl Multicore C66 DSP

Offloading vector addition of 8192K elements...
Kernel Exec : Queue to Submit: 7 us

Kernel Exec : Submit to Start : 68 us

Kernel Exec : Start to End - 32176 us

Success!

% TEXAS INSTRUMENTS

Building OpenCL Examples

 Copy the OpenCL examples directory into your
home directory.

rootPamh Pxx—euvm: ™l
rootPamh Pxx—euvm: ™l

rootl@am5?xx—euvm:"H cd ™
rootfam5?xx—evm:™H cp —r susrssharestisexamplessopencls
rootBam5?xx—euvm: " |

* Go to /opencl directory, do make clean
and then make. All directories will be
built.

 Next, run any of the projects by going to
the project directory and running the
executable.

rootl@amb?xx—euvm:"# cd opencl-s

rootlambSPxx—euvm:“Aopencllt make clean

rootl@amb?xx—euvm:"sopencllt make
platforms

main.cpp
ccode.c
offline
main.cpp
vadd.cl
vecadd
main.cpp
main_md.cpp
simple
simple.cpp

kernei.cl

dsplib_fft
fft_ocl.cpp

buffer
main.cpp

edmamgr
kernel.cl
main.cpp

null
main.cpp

offline_embed
vadd.cl
main.cpp

ooo_callback
ooo_callback._cpp

- float_compute

main.cpp
dsp_compute.cl

~A0

Tl Design Example Code Walkthrough

Introduction to OpenCL

% TEXAS INSTRUMENTS

OpenCL Tl Design: www.ti.com/tool/TIDEP0046

Monte-Carlo Simulation on AM57x Using OpenCL for DSP Acceleration
Reference Design

(ACTIVE) TIDEPOO46

o

B Description & Features Technical Documents Support & Community

O yicw the Important Notice for Tl Designs covering authorized use, intellectual property
matters and disclaimers.

Key Document

* Monte-Carlo Simulation on AM57x Using OpenCL Design Guide (PDF 1821 KB)
25 Sep 2015 233 views

View All Technical Documents (6)

Descrlptlon TIDEP0O46 Monte-Carlo Simulation on £

Acceleration Reference Des
TI's high performance ARM® Cortex®-A15 based AMS57x processors also integrate C66x

DSPs. These DSPs were designed to handle high signal and data processing tasks that are

often required by industrial, automotive and financial applications. The AM57x OpenCL

implementation makes it easy for users to utilize DSP acceleration for high computational View available purchase options for de:
tasks while using a standard programming model and language, thereby removing the the bill of materials.

need for deep knowledge of the DSP architecture. The TIDEP0046 Tl reference design

provides an example of using DSP acceleration to generate a very long sequence of

normal random numbers using standard C/C++ code. $599.00(USD)

Wi TEXAS INSTRUMENTS

OpenCL Tl Design: Resources

http://www.ti.com/tool/TIDEP0046

Software (1)

B Monte Carlo Simulation Example for OpenCL Software
(ZIP, 28 KB) 37 views, 14 Oct 2015

fer
MName Date moedified Type
'EL'I IMP MOTICE FOR REF DESIGMNS. pdf 6/9/2015 12:26 PM Adobe Acrobat D...
|| monte_carlo_arm.tar 10/22/2015 8:38 AM TAR File
| | monte_carlo_opencl.tar 10/14/201512:39 ... TAR File

15 KB
23 KB
57 KB

Wi TEXAS INSTRUMENTS

The Algorithm

do
1 A
vy.ll1l = {({unsigned long long) |_h) * mulv ; // this is 2**32 value because |_h is 2%*32 value
vz l2[1] =wvy.12[0] ; // Only lower 17bits of the multiplication survive the MOD(2**49)
vz l2[0] = {unsigned long) addV ; // because lower 22 bits are O
auxl = (long long) ({{ unsigned long long)l_1) * mulVv) ;
vv.lll ={ auxl +wvz.ll1) ;
Jf wvis the random number variable - translate it into|l_hans ||
I h=wv.I2[1] & Ox1tf ; // thisis the modulo 49 that zero out upper bits of the upper register
Ll =wv.l2[0] M lower 32 bits of the result

¥_aux = (float) |_h *FLOAT _ONE_OVER_17 bit ;
y_aux = (float) LI * dividvValue ;

X1 =x_aux+vy_aux ;

x1=20%*x1-1.0:

% TEXAS INSTRUMENTS

The Algorithm

w=x1*x1 +x2 *x2 :
if (w<1)
{
counter— ;
®x_aux = -log{w) ;
y aux=2.0/w ;
a_aux =x_aux *vy aux ;
b _aux =sqrt (a_aux) ;
ffw =sqgrt((-2.0 * log(w)) /w)
yl=x1*b aux ; //w ;
y2=x2*b aux ; //w ;
i printf (" results %d %f %f %f \n", counter,x1,x2,w) ;
S/printf("\n %d ->w %f -log %f two_oneOver %f \n",
J/counter,w,x_aux,y_aux) ;
Lprintf(” multiply %f sqrt %f y1 %f y2 %f \n",
fla_auw, b_aux, v1,v2) ;
*p_out++=vy1 ;
*p_out++=vy2 ;

)

Y while (counter >0) ;

Wi TEXAS INSTRUMENTS

Code Walkthrough

Mame Date modified Type Size

€+ cpu_main.cpp 10/14/2015 8:16 AM C++ Source 9 KB
|| dsp_ccode.c 10/28/20156:34 AM CFile 20 KB
|| dsp_kernels.cl 10/12/20156:24 PM CL File 3 KB
|| dsp_kernels.dsp_h 10/28/2015 6:47 AM D5P_H File 72 KB
.| Initial.h 10/12/200156:24 PM HFile 5KB
__| Makefile 10/12/2015 6:24 PM File JKE
|&| MonteCarloSimulationExampleforQpenC... 10/14/2015 5:09 AM Firefox HTML Doc... 13 KB
| show.py 10/12/2015 6:24 PM PY File 1KE

% TEXAS INSTRUMENTS

initial _tinitArea[8]; \

* Catch ctrl-c so we ensure dtors are called and the gspis reset pr

Cpu_ main.cpp

Context and host
memory

. *f

siznal [SIGABRT, exit);
siznal [SIGTERM, exit);

i

* Initizlize the seed structure for zll DSP

nitializelait (initAres)

Host memory

i*

* Begin OpenClLSetup codein try block tohandle any errors

. .

Define context,

——— device and gueue

try.

Contextctx(CL_DEVICE_TYPE_ACCELERATOR); g—

std::vector<Device> devices = ctx.getinfo<CL_CONTEXT_DEVICES>();

CommandQueue Q(ctx, devices[0], CL_QUEUE_PRDFILING_ENABLE];|

i*.

* Determine howmany chunks based on how many DSP cores are available

- -

it num_hunks;
devices[0].getinfo(CL DEVICE MAX COMPUTE_UNITS, &num_chunks);

Cpu_main.cpp

Buffer initBuf{ctx, CL_MEM_READ WRITE, sizeof(initArea));

Q.engueueWriteBuffer(initBuf, CL_TRUE, 0, sizeof(initArea), initArea); \

F
* Compile the Kernel Source for the devices

Program::Binaries binary(1,
make pair(dsp_kernels_dsp_bin,sizeof(dsp_kernels_dsp_hin}));

Program program = Program(ctx, devices, binary); <
program.build{devices);

KernelFunctor dsp_random = Kernel{program, "ocl _random”)
.bind{Q, NDRange(num_chunks), NDRange(1)});

int ary_size = ELEMENTS * sizeof{float);
float *aryl = (float®*)__malloc_ddr{ary_size);

float *ary2 = (float®*)___malloc_ddr{ary_size); <

Buffer bufl{ctx,CL_MEM_WRITE_ONLY|CL_MEM_USE_HOST_PTR,ary_size,aryl);
Buffer buf2(ctx,CL_MEM_WRITE_CONLY|CL _MEM_USE_HOST _PTR,ary_size,ary2);

Define a global buffer
initBuf and copy the host
buffer initArea into it.

Building a kernel from DSP
binaries that were compiled
from C code before .

Define buffers in the global
memory that the DSP and
the host can access. OpenCL
takes care of coherency.

% TEXAS INSTRUMENTS

Event ev = dsp_random{bufl, initBuf, ELEM ENTanum_:;hunkg}: C p u m a i n ° C p p

ev.wait(};
print_event{ev);

* dsp_random is the kernel that was built

pE__
* Starting the loop DFEVIOUS|y.

* * The code associates it with event.

* 1. Start a new DSP acceleration execution e ev wait() waits until the kernel is done

2. Read the previous buffer of random numbers

* 3. Call ARM code that is work in parallel with the DSP acceleratio * The outputis in bufl (g|0ba| memory that

* 4. Wait for the DSP acdceleration, calculate the time, print time host can access).

- '.I"

for (loopCount = 0; loopCount < ITERATIONS-1; loopCount += ?) €————

[The loop uses an explicit ping-pong buffer:
Event evZ = dsp_random(buf2, initBuf, ELEMENTS/num_chunks); 1. Start the kernel with buf2.
consumeBuffer{aryl, ELEMENTS); .
ev2.wait(): 2. ProFess t.he datain bgfl.
print_event(ev2); 3. Wait until the kernel is done.

4. Start the kernel with buf1l.
Event ev = dsp_random(bufl, init.Buf. ELEMENTS/num_chunks); 5. Process the data in buf2.
consumeBuffer{ary2, ELEMENTS); _)]
ev.wait(); 6. Wait until the kernel is done.
print_event{ev);

i

consumeBuffer(aryl, ELEMENTS); < Process the last buffer (bUfl)

Q.finish();

Wi TEXAS INSTRUMENTS

The OpenCL Kernel Code: Dsp_kernel.ci

kernel void ocl_random(global float *buf, global char *pValue, int size)

__attribute_ ((reqd_work_group_size(1,1,1)))
{

int wg_id = get_group_id(0); ‘-
JI.I'EC

P \

__cache_l1d_all{); <—

1

Set the work group size attributes.

Since the C code generates fix number of
values in each call, the 1,1,1, values tell the
compiler not to try and break the work into
multiple work items (work group).

Each DSP gets a single work group. The ID is
either 0 or 1 (in AM572 case).

L1D is used as SRAM for intermediate results
storage.

Calling a C routine with four arguments
(using a standard C call convention).

Return L1D to the original setting.

Wi TEXAS INSTRUMENTS

Dsp ccode.c

Standard DSP C function. The
file with all the include files

A / and the sub-routines is
void generateRandomGauss(float *outBuffer, int size, struct initial_t *vector, <~ compiled by the same Makefile
int index) that compiles main.cpp, with
H
the DSP code generator
float *scratchl = (float*)l1d_alloc (2 * (NORMS + 2) * sizeof(float));) g
float *scratch2 = (float*})l1d_alloc ((NORMS + 2) * sizeof{float)); compiler.
float *scratch3 = (float*}l1d_alloc ([[(NORMS + 2) * sizeof{float));
double *pad = (double *)l1d_alloc{ &* sizeof{double));
double *logtable = (double *}I1d_alloc [&% sizeof(double));
int i; L1D is used as SRAM and 5
for (i=0; i < size; i+=) buffers are allocated in L1D.

generate 1024 GaussianRandom(vector, index, &outBuffer[i], .
The number of elements in
scratchl, scratch2, scratch3,

logtable); < each call of the loop were
chosen so that the buffers fit
I1d_free_all(); into 32KB L1D.

Wi TEXAS INSTRUMENTS

For More Information

e Tl Design: Monte-Carlo Simulation on AM57x Using OpenCL for DSP Acceleration

Reference Design
http://www.ti.com/tool/TIDEP0046

e Processor SDK Product Page
http://www.ti.com/Isds/ti/tools-software/processor sw.page

e Processor SDK Training Series
http://training.ti.com/processor-sdk-training-series

e Tl OpenCL Wiki: http://processors.wiki.ti.com/index.php/OpenCL

e For questions regarding topics covered in this training, visit the support forums at the

Tl E2ZE Community website.

% TEXAS INSTRUMENTS

