

Created by Bryan Lizon Presented by Josh Brown

Types of multi-RTD measurement systems

Measuring multiple RTDs (same wiring config)

Measuring 4x 2-wire RTDs (low-side R_REF)

- 2x analog inputs (AINx) per RTD
- 1x IDAC & 1x output (BIASx) per RTD
- 1x differential reference input (REFx) common to all RTDs
- Common return current path through R_REF
- ✓ Same ADC requirements for measuring multiple 4-wire RTDs (greater number of terminal block inputs)
- × More complicated for multiple 3-wire RTDs
- × More complicated for high-side R_REF

Process for measuring multiple RTDs

- Switch IDAC to BIAS0
- Switch MUX to AIN0 / AIN1
- Measure VIN 1

Measuring RTD3

Measuring RTD4

- Switch IDAC to BIAS1
- Switch MUX to AIN2 / AIN3
- Measure VIN 2

- Switch IDAC to BIAS2
- Switch MUX to AIN4 / AIN5
- Measure VIN 3

- Switch MUX to AIN6 / AIN7
- Measure VIN 4

Repeat process as needed

Reducing the number of analog inputs

Measuring multiple 3-wire RTDs using 1x IDAC

Measuring 2x 3-wire RTDs using 1x IDAC (low-side R_REF)

- 3x analog inputs (AINx) per RTD
- 1x IDAC & 1x output (BIASx) per RTD
- 1x differential reference input (REFx) common to all RTDs
- Common return current path through R_REF
- ✓ Fewer IDAC outputs per RTD compared to 2x IDAC solution
- √ No IDAC mismatch error
- × Two measurements per RTD increases conversion latency

Measuring multiple 3-wire RTDs using 2x IDACs

Measuring 2x 3-wire RTDs using 2x IDACs (low-side R_REF)

- 2x analog inputs (AINx) per RTD
- 1x IDAC & 2x outputs (BIASx) per RTD
- 1x differential reference input (REFx) common to all RTDs
- Common return current path through R_REF
- ✓ One conversion per RTD
- Additional IDAC output required compared to 1x IDAC solution
- × Need to consider IDAC mismatch error

Measuring multiple RTDs with a high-side R_REF

Measuring 4x 2-wire RTDs (high-side R_REF)

- 2x analog inputs (AINx) per RTD
- 1x IDAC output (BIASx) common to all RTDs
- 1x differential reference input (REFx) common to all RTDs
- 1x external multiplexer to route the IDAC current to the correct RTD
- Common return current path through R BIAS
- √ Fewer IDAC outputs required compared to low-side R REF
- ✓ If applicable, ADC GPIOs can be used to control the external multiplexer
- × External multiplexer(s) required

Conversion latency

Measuring multiple RTDs

Delta-sigma ADC conversion latency considerations

For more detailed information, review TI's app note on conversion latency (SBAA535)

Example: multiple RTD measurement cycle time

**Ignores ADC communication time to change configuration

Thanks for your time! Please try the quiz.

Quiz: Multiple RTDs & conversion latency

- 1. (True/False) Some ADCs used to measure RTD signals can require multiple conversion cycles for the signal to settle to an accurate value. This settling time is referred to as conversion latency.
 - a) True
 - b) False
- 2. (True/False) When switching multiplexer inputs, some additional delay may be required to account for analog settling. Some ADCs include a programable delay for this purpose.
 - a) True
 - b) False

Thanks for your time!

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

