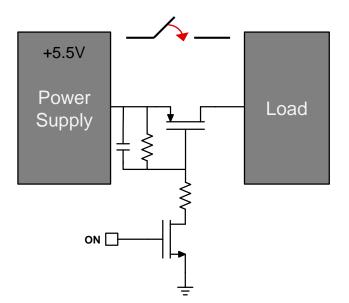
# **Load Switch Deep Dive**

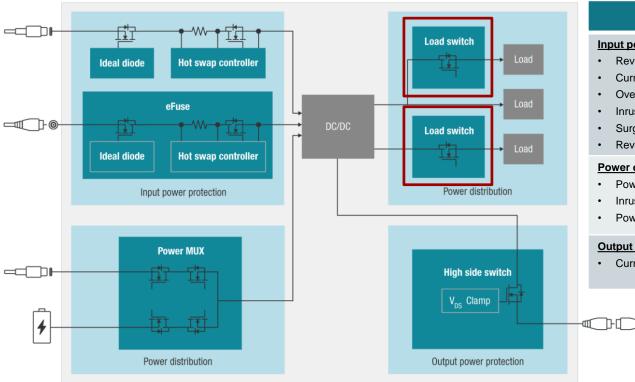

**Texas Instruments** 



1

# What is a load switch?

A device that turns DC power OFF and ON to a load




The two main functions a **load switch** can provide to a system is **power protection** and **power distribution** 



2

### **Power switches** | use cases



#### Common design challenges

#### Input power protection

- Reverse current blocking
- Current limiting
- Overvoltage protection
- Inrush current control
- Surge immunity
- Reverse polarity protection

#### **Power distribution**

- Power sequencing
- Inrush current control
- Power muxing/power ORing

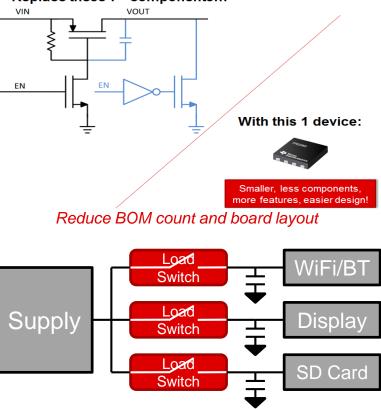
#### Output power protection

Current limiting



# Load switch overview

Extend battery life by reducing standby leakage current. Turn off unused subsystems w/load switches: WiFi/BT, LCD, SD Card


**Save space** and reduce solution size by integrating discrete circuitry into a load switch (2+ FETs w/Resistors & Capacitors)

Simplify power sequencing by implementing point of load control with load switches. Power on/off each rail with GPIO

Mitigate inrush current damage to the system with integrated "Soft Start" slew rate /rise time control.

| Load switch<br>features            |                                                                                                        |
|------------------------------------|--------------------------------------------------------------------------------------------------------|
| <u>Slew rate</u><br><u>control</u> | Adjust the slew rate of your device to meet your systems timing requirements, and limit inrush current |
| Power good                         | Use power good and fault indicators to ensure reliability of your system                               |
| <u>Thermal</u><br><u>shutdown</u>  | Protects the device from permanent damage from overheating by shutting down                            |
| Short circuit<br>protection        | Prevents hard/soft shorts from damaging the device                                                     |
| Reverse current<br>protection      | Prevents current from flowing from the output to the input of the device and damaging it               |
| Current limit                      | Limits the current through the device                                                                  |
| Quick output<br>discharge          | Discharges the output of the load switch to ground through some resistance                             |

Replace these 7+ components...



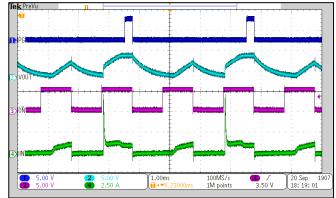
Manage power distribution for subsystems

# **Inrush current control**

- Significant output capacitance causes inrush current
- Load switches reduce inrush current by <u>controlling</u> output slew rate & increasing T<sub>R</sub>

 $I_{INRUSH} = C_{LOAD} \times \frac{dV}{dt}$ 

#### Where


 $I_{\text{INRUSH}}$  = amount of inrush current caused by a capacitance C = total capacitance

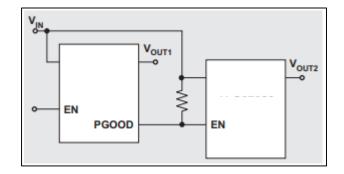
dV = change in voltage during ramp up

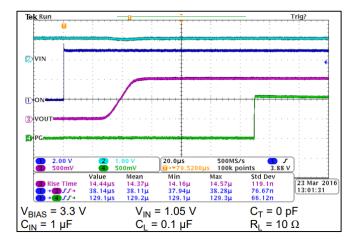
dt = rise time (during voltage ramp up)

### • For example: $C_{OUT} = 100 \ \mu\text{F}$ at 5V you want to limit at a max of 1A $T_R = \frac{100 \ \mu\text{F} * 5V}{1 \ A} = 500 \ \mu\text{S}$

You will need a T<sub>R</sub> of 500 µS to keep the inrush current to 1A

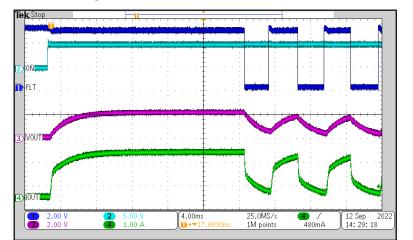



# **Power good**


### Functionality:

- Indicates that the output voltage of the device has risen to 90% of its <u>final value</u>. Some devices may have internal delays built in
- Open drain output

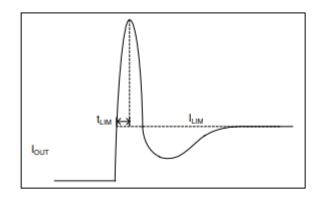
#### Applications:

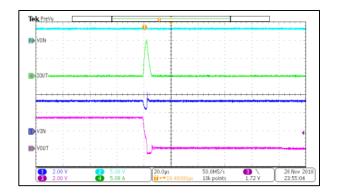

- Power sequencing (For example: DDR)
- Logic control (For example: power multiplexing)





## **Thermal shutdown**


- T<sub>SD</sub> prevents the junction temperature of the device from exceeding a fixed threshold to protect the device
- Includes auto-retry when T<sub>J</sub> < falling temperature threshold</li>



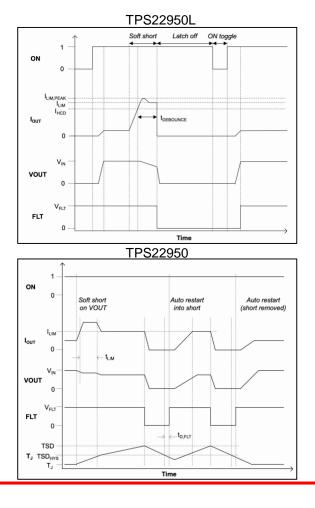

| Thermal Shutdown (TSD) |                  |                      |     |     |    |  |  |  |
|------------------------|------------------|----------------------|-----|-----|----|--|--|--|
| TSD Thermal Shutdown   | Thormal Shutdown | Rising               | N/A | 170 | °C |  |  |  |
|                        | Thermal Shutdown | Falling (Hysteresis) | N/A | 150 | °C |  |  |  |
| TPS22950               |                  |                      |     |     |    |  |  |  |

# Short circuit protection (SCP) Vs. current limit

- SCP trigger method: V<sub>IN</sub> V<sub>OUT</sub> > V<sub>sc</sub> compares input and output voltage until it exceeds a specified amount and enters a regulation state.
- Current limit trigger method: Will have an integrated sense circuit that moves the device into a regulation state when current exceeds a specified value.
- Devices with the current limiting feature will also have SCP, but devices with SCP may not have current limiting.






# Load switch current limiting

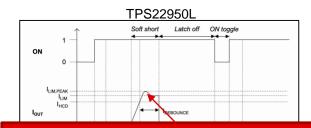
### Latch off current limit:

 Over current fault causes the device to turn off after a short period of current limiting at a set value until the ON pin is toggled

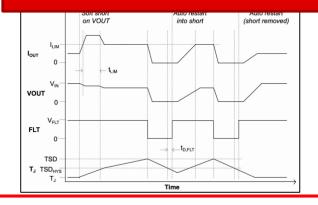
### Current regulation:

 Over current fault causes the device to limit at a set current value until the fault is removed or the device hits T<sub>SD</sub>




# Load switch current limiting

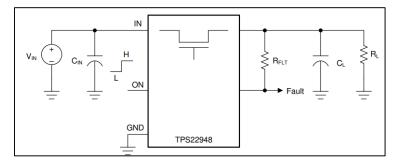
### Latch off current limit:


 Over current fault causes the device to turn off after a short period of current limiting at a set value until the ON pin is toggled

### Current limit hold:

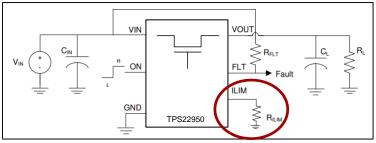
 Over current fault causes the device to limit at a set current value until the fault is removed or the device hits T<sub>SD</sub>




I<sub>LIMPEAK</sub> is the overshoot of current that occurs just before the current limit is engaged



# Load switch current limiting


### Fixed current limit:

 Some devices have a fixed current limit such as the TPS2294x series



### Adjustable current limit:

 Other devices, through an "I<sub>LIM</sub>" pin, have an adjustable current limit such as the TPS22950



# **Reverse current protection (RCP)**

**RCP** activation:

• For RCP to enable:  $V_{OUT} > V_{IN} + V_{RCP}$  where  $V_{RCP}$  is device specific and dependent on the  $R_{ON}$  of the device. This means some reverse current will occur

### RCP when disabled:

 When ON < V<sub>IL</sub> the device enables RCP, otherwise it is disabled

Always-ON RCP:

Regardless of ON the device enables RCP

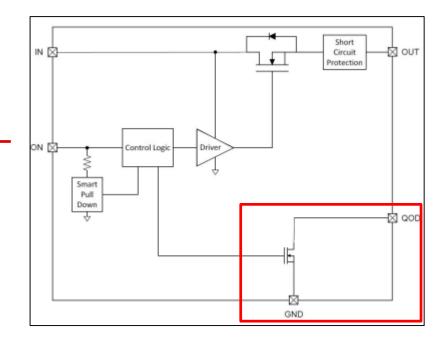
|   |                                                     | V <sub>IN</sub> = 5.25 V, I <sub>OUT</sub> = -200 mA | 25°C | 60     | 80 |    |
|---|-----------------------------------------------------|------------------------------------------------------|------|--------|----|----|
|   |                                                     | VIN = 5.25 V, IOUT = -200 IIIA                       | Full | 1      | 10 |    |
|   |                                                     | V 50V/1 000 - 1                                      | 25°C | 60     | 80 |    |
|   | V <sub>IN</sub> = 5.0 V, I <sub>OUT</sub> = -200 mA | Full                                                 | 1    | 10     |    |    |
|   |                                                     | V <sub>IN</sub> = 4.2 V, I <sub>OUT</sub> = -200 mA  | 25°C | 60     | 80 |    |
|   |                                                     |                                                      | Full | 1      | 10 |    |
|   | <b>a</b>                                            | V 0.0.V.I. 000                                       | 25°C | 60.7   | 80 |    |
| N | On-resistance                                       | V <sub>IN</sub> = 3.3 V, I <sub>OUT</sub> = -200 mA  | Full | 1      | 10 | mΩ |
|   |                                                     |                                                      | 25°C | 63.4   | 90 |    |
|   |                                                     | V <sub>IN</sub> = 2.5 V, I <sub>OUT</sub> = -200 mA  | Full | 1      | 20 |    |
|   |                                                     |                                                      | 25°C | 74.2 1 | 00 |    |
|   |                                                     | V <sub>IN</sub> = 1.8 V, I <sub>OUT</sub> = -200 mA  | Full | 1      | 30 |    |
|   |                                                     |                                                      | 25°C | 83.9 1 | 20 |    |
|   |                                                     | V <sub>IN</sub> = 1.5 V, I <sub>OUT</sub> = -200 mA  | Full | 1      | 50 |    |

$$V_{RCP} = 44mV$$
$$R_{ON} = 60m\Omega$$
$$I_{RCB} = \frac{44mV}{60m\Omega} = 733mA$$

|                  |                         | -                      | <br> |    |
|------------------|-------------------------|------------------------|------|----|
| V <sub>RCP</sub> | Reverse current voltage | TPS22910A, TPS22913B/C | 44   |    |
|                  | threshold               | TPS22912C              | 54   | mV |

# **Quick output discharge**

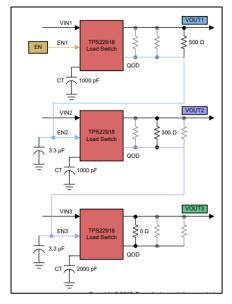
### **Benefits:**

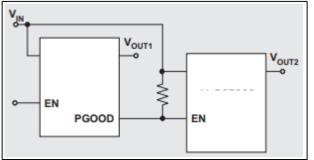

- QOD ties the output of the device to ground through resistance when V<sub>EN</sub> < V<sub>IL</sub>
- Known state
- Ensures downstream devices are turned off

Cons:

- Batteries and super charge capacitors on output
- Power multiplexing

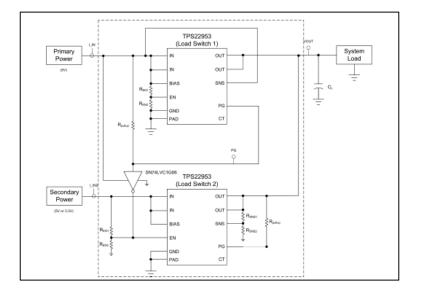
Equation for fall time:  


$$t_f = R_{L||QOD} \times C_L \times \ln\left(\frac{V_{10\%}}{V_{90\%}}\right)$$

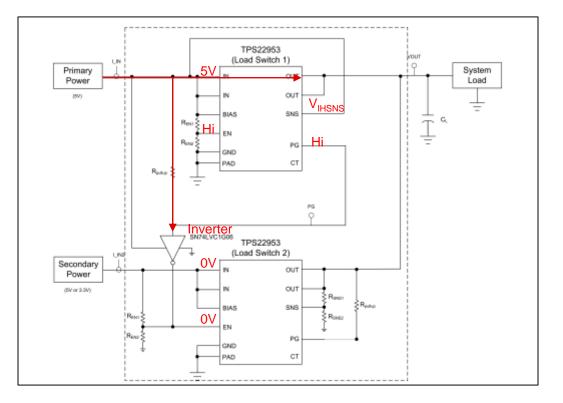



# **Power sequencing**

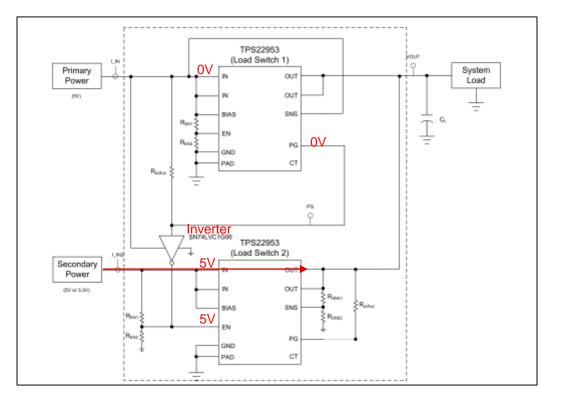
- Some applications require power rails to be enabled in a specific order
- Load switches can help achieve sequencing needs using PG, QOD or slew rate control


| Supply S | upply on        |
|----------|-----------------|
| Load 1   | Load 1 enabled  |
| Load 2   | Load 2 enabled  |
| Load 3   | Load 3 disabled |

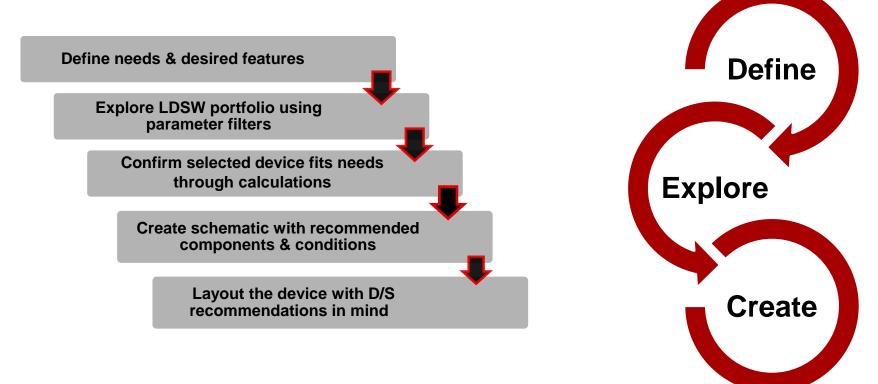





# **Logic control**


- Power multiplexing applications often require break-before-make logic to prevent feeding power back into supplies
- Using the PG pin of TPS22953 and an inverter we can create a logic control scheme for power multiplexing application to ensure only one switch is enabled at a time




## **Power good logic control**

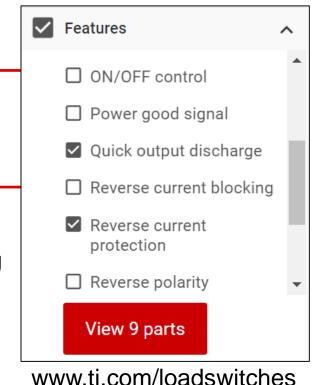


## **Power good logic control**








# **Needs defined**

#### Device use case

- Power sequencing
- Inrush control

### System needs & parameters

- Small size
- RCP for upstream modules/supply
- QOD to keep downstream modules from floating
- Limit inrush current
- $C_L = 100 \mu F$
- V<sub>IN</sub> = 5V
- $R_L = 10 \Omega$
- $I_{OUT} = 500 \text{mA}$



# **Selecting a device**

| 9 matching pa | ts out of 69 total parts   Log in to view inventory Log in                                                                                            |                           |                     |                     |                        |                  |                     |                                      |                                      |                         |                         |                       |                                                                                                          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|---------------------|------------------------|------------------|---------------------|--------------------------------------|--------------------------------------|-------------------------|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|
| Compare       | Part Number<br>Filter by part number Q                                                                                                                | Number of<br>channels (#) | Vin<br>(Min)<br>(V) | Vin<br>(Max)<br>(V) | Approx.<br>price (USD) | ↓<br>Imax<br>(A) | Ron (Typ)<br>(mOhm) | Shutdown current<br>(ISD) (Typ) (uA) | Quiescent current<br>(Iq) (Typ) (uA) | Soft start              | Rise time<br>(Typ) (us) | Current limit<br>type | Features                                                                                                 |
| ٥             | $\text{TPS22968}$ - 2-ch, 5.5-V, 4-A, 25-m $\Omega$ load switch with adj. rise time and output discharge                                              | 2                         | 0.8                 | 5.5                 | \$0.293  <br>1ku       | 4                | 25                  | 0.5                                  | 55                                   | Adjustable<br>Rise Time | 65                      | None                  | Quick output discharge, Reverse current protection                                                       |
| 0             | $TPS22968\mbox{-}Q1\mbox{-}2\mbox{-}ch, 5.5\mbox{-}V, 4\mbox{-}A, 27\mbox{-}m\Omega,$ automotive load switch with adj. rise time and output discharge | 2                         | 0.8                 | 5.5                 | \$0.346  <br>1ku       | 4                | 27                  | 0.5                                  | 55                                   | Adjustable<br>Rise Time | 65                      | None                  | Quick output discharge, Reverse current protection                                                       |
| ٥             | TPS22925 - 3.6-V, 3-A, 9.2-mΩ load switch with output discharge                                                                                       | 1                         | 0.65                | 3.6                 | \$0.173  <br>1ku       | 3                | 10.3                | 0.5                                  | 60                                   | Fixed Rise<br>Time      | 61                      | None                  | Inrush current control, Quick output discharge,<br>Reverse current protection                            |
|               | TPS22964C - 5.5-V, 3-A, 14-mΩ load switch with output discharge                                                                                       | 1                         | 1                   | 5.5                 | \$0.243  <br>1ku       | 3                | 13.8                | 0.76                                 | 38                                   | Fixed Rise<br>Time      | 890                     | None                  | Quick output discharge, Reverse current<br>protection                                                    |
| ٥             | $\text{TPS22950}$ - 5.5-V, 2-A, 40-m $\Omega$ load switch with adjustable current limit                                                               | 1                         | 1.8                 | 5.5                 | \$0.200  <br>1ku       | 2.7              | 40                  | 0.2                                  | 40                                   | Fixed Rise<br>Time      | 550                     | Adjustable            | Quick output discharge, Reverse current<br>protection, Short circuit protection, Thermal<br>shutdown     |
|               | $TPS22916$ - 5.5-V, 2-A, 60-m $\!\Omega$ , 10-nA leakage load switch with output discharge                                                            | >                         | 1                   | 5.5                 | \$0.112  <br>1ku       | 2                | 60                  | 0.01, 0.1                            | 0.5                                  | Adjustable<br>Rise Time | 65, 900                 | None                  | Active low, Quick output discharge, Reverse current protection                                           |
|               | TPS22917 - 5.5-V, 2-A, 80-mΩ , 10-nA leakage load switch adj.<br>rise time and adj output discharge                                                   | 1                         | 1                   | 5.5                 | \$0.141  <br>1ku       | 2                | 80                  | 0.01                                 | 0.5                                  | Adjustable<br>Rise Time | 55                      | None                  | Quick output discharge, Reverse current protection                                                       |
| 0             | TPS22913 - 5.5-V, 2-A, 60-m $\Omega$ load switch with output discharge                                                                                | 1                         | 1.4                 | 5.5                 | \$0.207  <br>1ku       | 2                | 61                  | 10                                   | 2                                    | Fixed Rise<br>Time      | 82, 838                 | None                  | Inrush current control, Quick output discharge,<br>Reverse current protection, Under voltage lock<br>out |
| ٥             | $TPS22929D$ - 5.5-V, 1.8-A, 115-m $\Omega$ load switch with output discharge                                                                          | 1                         | 1.4                 | 5.5                 | \$0.232  <br>1ku       | 1.8              | 115                 | 10                                   | 2                                    | Fixed Rise<br>Time      | 3660                    | None                  | Inrush current control, Quick output discharge,<br>Reverse current protection, Under voltage lock<br>out |

# **Selecting a device**

#### Devices

- TPS22916B 70µS t<sub>r</sub> with QOD and active high
- TPS22916BL 70µS t<sub>r</sub> with QOD and active low

#### 6.6 Switching Characteristics

Unless otherwise noted, the typical characteristics in the following table applies over the entire recommended power supply voltage range of 1 V to 5.5 V at 25°C with a load of C<sub>L</sub> =  $0.1\mu$ F, R<sub>L</sub> =  $10\Omega$ .

|                              | PARAMETER               | TEST CONDITIONS         | MIN                   | TYP MAX |     |
|------------------------------|-------------------------|-------------------------|-----------------------|---------|-----|
| TPS22916<br>TPS22916         |                         |                         |                       |         |     |
|                              |                         | V <sub>IN</sub> = 5 V   |                       | 115     |     |
|                              |                         | V <sub>IN</sub> = 3.6 V |                       | 140     |     |
| t <sub>ON</sub> Turn On Time | V <sub>IN</sub> = 1.8 V |                         | 250                   | μs      |     |
|                              |                         | V <sub>IN</sub> = 1.2 V |                       | 350     |     |
|                              |                         | VIN                     | V <sub>IN</sub> = 1 V |         | 510 |
|                              |                         | V <sub>IN</sub> = 5 V   |                       | 70      |     |
|                              |                         | V <sub>IN</sub> = 3.6 V |                       | 80      |     |
| t <sub>RISE</sub>            | Rise Time               | V <sub>IN</sub> = 1.8 V |                       | 130     | μs  |
|                              |                         | V <sub>IN</sub> = 1.2 V |                       | 190     |     |
|                              |                         | V <sub>IN</sub> = 1 V   |                       | 240     | 7   |

$$Inrush_{Current} = \frac{100\mu F * 5V}{70\mu S} = 7.14A$$
  
I<sub>MAX</sub> = 7.64 A outside of specifications



# **Selecting a device**

#### Devices

- TPS22916C 800µS t<sub>r</sub> with QOD and active high
- TPS22916CN 800µS t<sub>r</sub> without QOD and active high
- TPS22916CL 800µS t<sub>r</sub> with QOD and active low
- TPS22916CNL 800µS t<sub>r</sub> without QOD and active low

| .6 Switching Characteristics (continued) |
|------------------------------------------|
|------------------------------------------|

Unless otherwise noted, the typical characteristics in the following table applies over the entire recommended power supply voltage range of 1 V to 5.5 V at 25°C with a load of C<sub>L</sub> = 0.1 $\mu$ F, R<sub>L</sub> = 10 $\Omega$ .

|                              | PARAMETER                         | TEST CONDITIONS         | MIN TYP | MAX | UNIT |
|------------------------------|-----------------------------------|-------------------------|---------|-----|------|
| TPS22916<br>TPS22916         | C, TPS22916CN, TPS22916CL,<br>CNL | · · · ·                 |         |     |      |
|                              |                                   | V <sub>IN</sub> = 5 V   | 1400    |     |      |
| t <sub>on</sub> Turn On Time | V <sub>IN</sub> = 3.6 V           | 1700                    |         |     |      |
|                              | Turn On Time                      | V <sub>IN</sub> = 1.8 V | 3000    |     | μs   |
|                              |                                   | V <sub>IN</sub> = 1.2 V | 5000    |     |      |
|                              | V <sub>IN</sub> = 1 V             | V <sub>IN</sub> = 1 V   | 6500    |     |      |
|                              |                                   | V <sub>IN</sub> = 5 V   | 800     |     |      |
|                              |                                   | V <sub>IN</sub> = 3.6 V | 900     |     |      |
| t <sub>RISE</sub>            | Rise Time                         | V <sub>IN</sub> = 1.8 V | 1400    |     | μs   |
|                              |                                   | V <sub>IN</sub> = 1.2 V | 2300    |     |      |
|                              |                                   | V <sub>IN</sub> = 1 V   | 3000    |     |      |

$$Inrush_{Current} = \frac{100\mu F * 5V}{800\mu S} = 625mA$$
  
I<sub>MAX</sub> = 1.125 A within specifications



# **Thermal calculations**

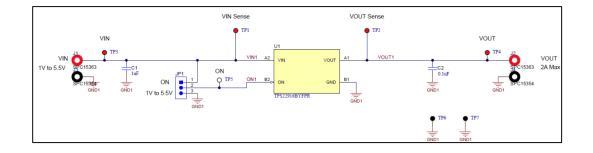
#### Power dissipation

 $P_D = I_{LOAD}^2 \times R_{ON}$  $P_D = 0.5^2 \times 80 = 20mW$ 

### Thermal resistance

$$T_J = R_{\theta JA} \times P_D + T_A$$
  

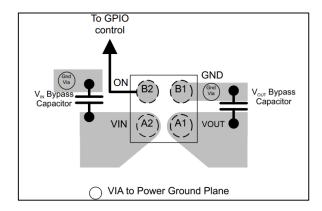
$$T_J = 193 \times 0.02 + 25 = 28.9 \ ^\circ C$$
  
Considerations

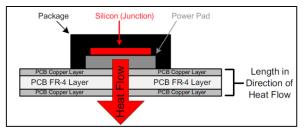

 $R_{\Theta JA}$  is based on a JEDEC standard board with thin power traces and limited thermal dissipation. It's also helpful to get a general idea of a devices thermal performance, but can be significantly improved through methods mentioned in the layout section

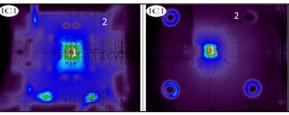
| ON-RESI<br>(R <sub>ON</sub> ) | STANCE        |                           |                                         |                         |                |     |     |    |
|-------------------------------|---------------|---------------------------|-----------------------------------------|-------------------------|----------------|-----|-----|----|
|                               |               |                           |                                         | 25°C                    | 60             | 80  |     |    |
|                               |               |                           | V <sub>IN</sub> = 5 V                   | -40°C to +85°C          |                | 100 |     |    |
|                               |               |                           | -40°C to +105°C                         |                         | 120            |     |     |    |
|                               |               |                           |                                         | 25°C                    | 70             | 90  |     |    |
|                               |               |                           | V <sub>IN</sub> = 3.6 V                 | -40°C to +85°C          |                | 120 |     |    |
|                               |               |                           |                                         | -40°C to +105°C         |                | 140 |     |    |
|                               |               |                           |                                         | 25°C                    | 100            | 125 |     |    |
| R <sub>ON</sub>               | ON-Resistance | I <sub>OUT</sub> = 200 mA | ON-Resistance I <sub>OUT</sub> = 200 mA | V <sub>IN</sub> = 1.8 V | -40°C to +85°C |     | 150 | mΩ |
|                               |               |                           |                                         | -40°C to +105°C         |                | 175 |     |    |
|                               |               |                           |                                         | 25°C                    | 150            | 200 |     |    |
|                               |               |                           | V <sub>IN</sub> = 1.2 V                 | -40°C to +85°C          |                | 250 |     |    |
|                               |               |                           |                                         | -40°C to +105°C         |                | 300 |     |    |
|                               |               |                           |                                         | 25°C                    | 200            | 275 |     |    |
|                               |               |                           | V <sub>IN</sub> = 1 V                   | -40°C to +85°C          |                | 325 |     |    |
|                               |               |                           |                                         | -40°C to +105°C         |                | 375 |     |    |

|                    |                                              | TPS22916xx |      |
|--------------------|----------------------------------------------|------------|------|
|                    | Thermal Parameters <sup>(1)</sup>            | YFP (WCSP) | UNIT |
|                    |                                              | 4 PINS     |      |
| θ <sub>JA</sub>    | Junction-to-ambient thermal resistance       | 193        | °C/W |
| θ <sub>JCtop</sub> | Junction-to-case (top) thermal resistance    | 2.3        | °C/W |
| θ <sub>JB</sub>    | Junction-to-board thermal resistance         | 36         | °C/W |
| Ψјт                | Junction-to-top characterization parameter   | 12         | °C/W |
| Ψјв                | Junction-to-board characterization parameter | 36         | °C/W |

### **Schematic**


- $C_{IN} 1\mu F$  recommended
- $C_{OUT} 0.1 \mu F$  recommended
- C<sub>IN</sub>:C<sub>OUT</sub> 10:1 ratio for weak supplies that are unable to provide inrush current without dropping in voltage





 These are recommendations but not mandatory for device performance

## Layout

- Polygon pour planes
- Via stitching GND pour to GND plane
- Capacitance close to pins minimizes current loops
- Copper and FR-4 layer thickness & amount of layers connected to increases the devices ability to dissipate heat
- Board area increases have diminishing returns







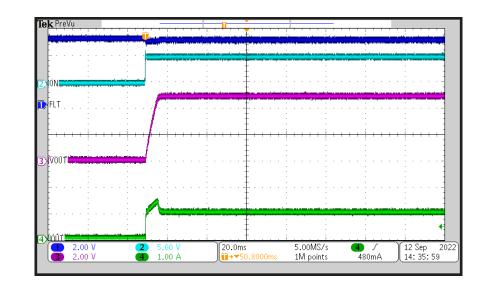
# Load types

Capacitive

- Inrush current is the main concern as shown previously
- Weak supplies are concerning with significant output capacitance

Resistive

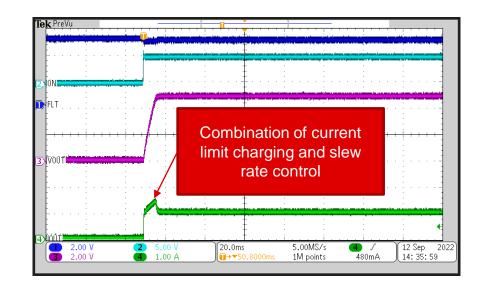
 Maintaining conditions within recommended specifications when including base R<sub>L</sub> and any inrush current or inductive swinging from line inductance


Inductive

Not recommended with load switches as there isn't a V<sub>DS</sub> clamp; however, possible provided other protections in place exterior to the load switch

# **Capacitor charging**

**Slew rate control**: Significant inrush current due to capacitance can be controlled by controlling the slew rate of the output voltage, preventing significant spikes in current to charge capacitors.

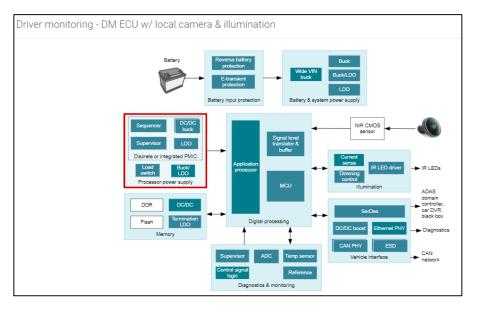

**Current limit**: Allowing the device to charge a capacitor quickly by limiting the current at a set value



# **Capacitor charging**

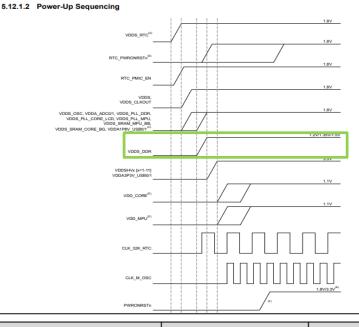
**Slew rate control**: Significant inrush current due to capacitance can be controlled by controlling the slew rate of the output voltage, preventing significant spikes in current to charge capacitors.

**Current limit**: Allowing the device to charge a capacitor quickly by limiting the current at a set value




## **Automotive Standards & Specifications**

- AEC-Q100 is an automotive standard that specifies the stress test qualifications a device must pass without any true failures
- ISO, and IEC specifications do not apply since supply is from DC/DC & load is on same ECU


# **ADAS specific design**

- DC/DC buck (12V lead acid battery to 3.3V)
- Load switch enables rail to processor for DDR
- Supply/load on same ECU
- AEC-Q100 requirement

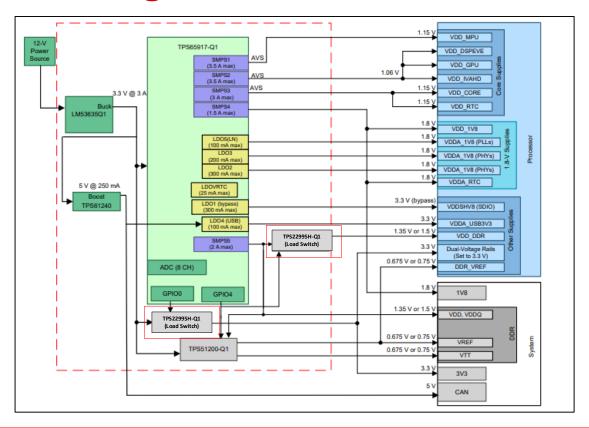


# **DDR requirements**

- Voltage requirements: 1.5V & 3.3V
- Current requirement: 300mA
- Power sequencing
- TPS22995H-Q1

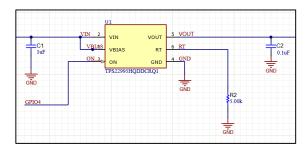


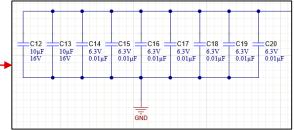
| NO.                                              |                 | PARAMETER | MIN                                                  | MAX   | UNIT  |         |    |
|--------------------------------------------------|-----------------|-----------|------------------------------------------------------|-------|-------|---------|----|
| 1                                                | VDDS_DDR bulk b | ypas      | s capacitor count                                    | 2     |       | Devices |    |
| 2                                                | VDDS_DDR bulk b | ypas      | 20                                                   |       | μF    |         |    |
| VDDS_DDR Sup                                     |                 | Supp      | ly voltage range for DDR IO domain (DDR3)            | 1.425 | 1.500 | 1.575   | i  |
|                                                  |                 | Supp      | ly voltage range for DDR IO domain (DDR3L)           | 1.283 | 1.350 | 1.418   | v  |
|                                                  |                 | Supp      | ly voltage range for DDR IO domain (LPDDR2)          | 1.140 | 1.200 | 1.260   |    |
| VDDS_DDR                                         |                 |           | Maximum current rating for DDR IO domain; DDR3/DDR3L |       |       | 300     | mA |
| Maximum current rating for DDR IO domain; LPDDR2 |                 |           |                                                      |       |       | 150     |    |

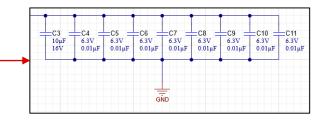

# **DDR requirements**

- Voltage requirements: 1.5\ 3.3V
- Current requirement: 300m

- Power sequencing
- TPS22995H-Q1

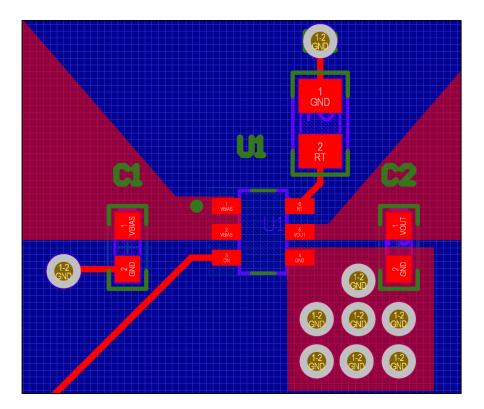

|                                                               | 5.12.1.2 Power-Up Sequencing                                                                                                      |       |       |                          |  |  |  |  |  |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------|--|--|--|--|--|--|--|
| rements                                                       | VDDS_RTC                                                                                                                          |       | /     | 1.8V                     |  |  |  |  |  |  |  |
| ements: 1.5V &                                                | -<br>RTC_PMIC_EI                                                                                                                  |       | /     | 1.8V                     |  |  |  |  |  |  |  |
|                                                               | VDDS_CLKOU<br>VDDS_DSC, VDDA, ADCOIT, VDDS_PLL_DDB<br>VDDS_PLL_CORF_LDO, VDDS_SFAM, MPU_BB<br>VDDS_SRAM_CORF_BG, VDDA/178V USB011 |       |       | 1.8V                     |  |  |  |  |  |  |  |
| ement: 300mA                                                  |                                                                                                                                   |       |       | 1.1V                     |  |  |  |  |  |  |  |
| oing                                                          |                                                                                                                                   |       |       | 1.1V                     |  |  |  |  |  |  |  |
| cing                                                          | CLK_32K_RT                                                                                                                        |       |       |                          |  |  |  |  |  |  |  |
| 21                                                            | CLK_M_OS                                                                                                                          |       |       | 1.8V/3.3V <sup>(E)</sup> |  |  |  |  |  |  |  |
| 6.3 Recommended Operating Conditions TPS22995H-Q1             |                                                                                                                                   |       |       |                          |  |  |  |  |  |  |  |
| over operating free-air temperature range (unless otherwise r |                                                                                                                                   | IN NO | MAX N | UNIT                     |  |  |  |  |  |  |  |
| V <sub>IN</sub> Input Voltage                                 | (                                                                                                                                 | .8    | 5.5   | V                        |  |  |  |  |  |  |  |
| V <sub>BIAS</sub> Bias Voltage                                |                                                                                                                                   | .5    | 5.5   | V                        |  |  |  |  |  |  |  |
| VIH ON Pin High Voltage Range                                 | (                                                                                                                                 | ).8   | 5.5   | V                        |  |  |  |  |  |  |  |
| VIL ON Pin Low Voltage Range                                  |                                                                                                                                   | 0     | 0.35  | V                        |  |  |  |  |  |  |  |
| T <sub>A</sub> Ambient Temperature                            | -                                                                                                                                 | 40    | 125   | °C                       |  |  |  |  |  |  |  |


### **ADAS block diagram**




# ADAS TPS22995H-Q1 schematic

- V<sub>IN</sub> and V<sub>BIAS</sub> are tied together and supplied by SMPS5 of PMIC
- GPIO4 controls ON signal to power sequence the device
- Bulk capacitance on output of PMIC ensures the rail doesn't dip in voltage when power is provided
- Bypass capacitors are required near processor DDR input pin (usually on topside/backside of processor)








# ADAS TPS22995H-Q1 layout

- Polygon pours for V<sub>IN</sub>/V<sub>OUT</sub> > 0.5 In<sup>2</sup>
- $C_{IN}$  and  $C_{OUT}$  capacitors as close to  $V_{IN}$  and  $V_{OUT}$  pins as possible
- GND polygon pour with vias to GND plane
- RT resistor placed close to RT pin

