Display Brightness Adjustment TI Precision Labs – Light Sensors

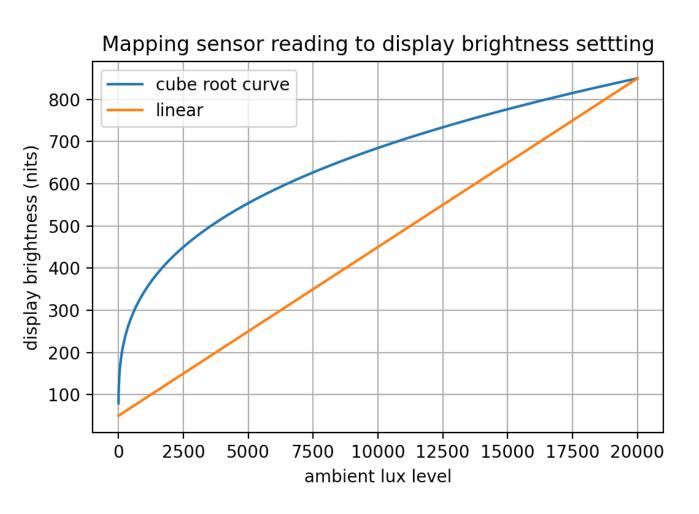
Presented by Rahland Gordon

Prepared by Alex Bhandari-Young, Karthik Rajagopal and Rahland Gordon

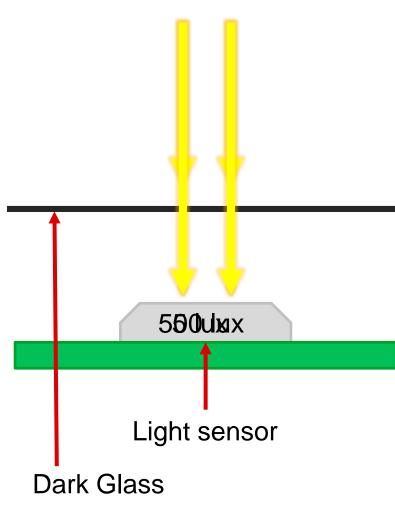
Display Brightness Adjustment Use Case & Application Industrial **Personal Electronics**

Key Benefits

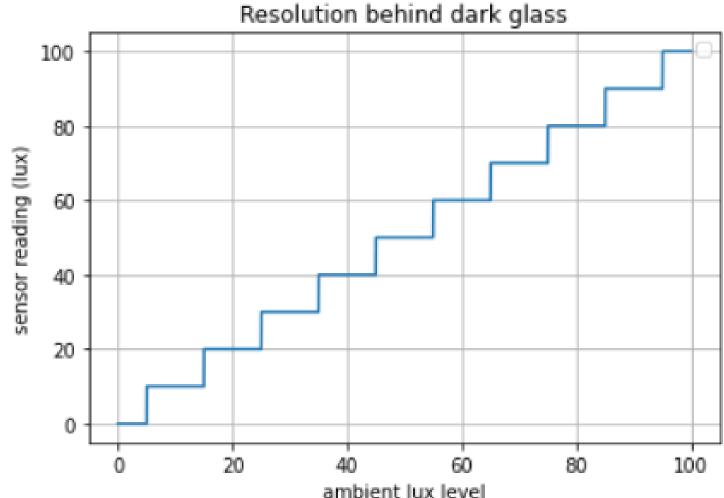
- User Experience
- Preserve battery life lacksquare



Adjusting the display

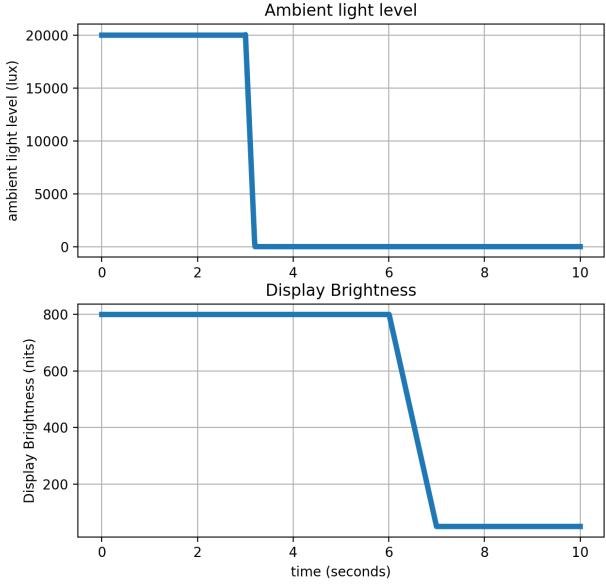

- Light sensor measures ambient lux
- Display brightness adjusted based on sensor reading by MCU
 - Mapping between sensor and display should be determined through testing user experience
 - Example plot shows linear and cube root mappings

Sensor Resolution


- Sensor resolution will effect the minimum light level and minimum change detectable
- Dark glass decreases resolution

Sensor Resolution

- Sensor resolution will effect the minimum light level and minimum change detectable
- Dark glass decreases resolution
 - Sensor with 100 mlux resolution
 - Placed behind 1% dark glass
 - Will have resolution of 10 lux
- Dark glass effect
 - TI OPT3004: 10mlux -> 1 lux
 - TI OPT4001: 312.5ulux -> 3mlux



Sensor Data Rate

- Slow data rate can give poor user experience when light transitions quickly
 - Stepping indoors on a sunny day
- Slowness of 3 second conversion time is shown • on the right
- 100ms conversion time allows much faster ٠ response
- Combination of conversion time and resolution • important

Device	Conversion time		Under 2% dark glass
OPT3004	100ms	80mlux	4000mlux
OPT4001	100ms	2.5mlux	125mlux

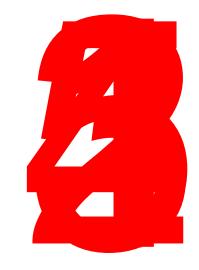
Spectral Matching and Size

- Matching to photopic curve impacts sensor accuracy
- Close matching will result in correct display brightness setting across light source types
 - Outdoor sunlight/cloudy
 - Indoor light sources: LED, CFL, Incandescent, etc.
- Some applications may have space constraints
 - DTS package: 2.1mm x 1.9mm x 0.6mm
 - WCSP package: 1mm x 1mm x 0.2mm

700 800 900 1000

	OPT4001 Human Eeye					

To find more light sensor technical resources and search products, visit ti.com/ambientlightsensors



Thanks for your time! Please try the quiz.

Quiz

- 1. Why might a linear mapping between display brightness setting and the ambient lux level not be ideal? (select all that apply)
 - Different types of light sources (CFL, incandescent, LED) have different lux levels a)
 - b) The human eye does not respond linearly to the lux level
 - The display viewed from different angles will have a different intensity C)
 - The display brightness setting may not be linear with the display brightness d)

Quiz

- 1. Why might a linear mapping between display brightness setting and the ambient lux level not be ideal? (select all that apply)
 - Different types of light sources (CFL, incandescent, LED) have different lux levels a)
 - The human eye does not respond linearly to the lux level b)
 - The display viewed from different angles will have a different intensity C)
 - d) The display brightness setting may not be linear with the display brightness

