TI TECH DAYS

Getting started with the new PSpice[®] for TI design and simulation tool

Ian Williams

APP – LP – LDO

About me – Ian Williams Business lead, Low-Voltage LDOs

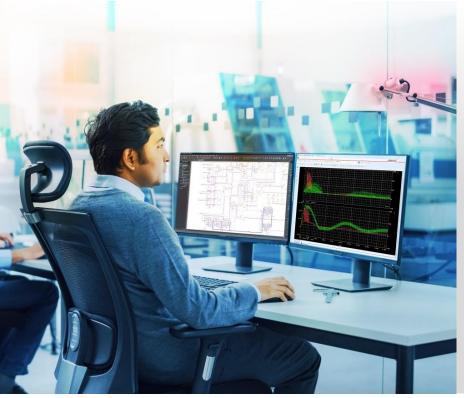
- Career
 - **UT DALLAS** - BSEE University of Texas at Dallas, 2009
 - TI since 2009, LDO since July 2020
- Expertise
 - 11 years working with various types of amplifiers
 - Co-creator of GWL amplifier SPICE model architecture
 - Co-creator of TI Precision Labs Op Amps
- Fun fact
 - Big music guy have performed at festivals, DJ'd at clubs and on FM radio, and even met my wife at Coachella 2013

Agenda

- TI simulation tools overview 10 min.
- PSpice[®] for TI deep dive 10 min.
 - Features and limitations
 - Built-in model library
- Setup and simulation examples 25 min.
 - Operational amplifier: OPA211
 - Power supply: TPS7A52
 - Modeling Application: Power MOSFET
- Additional resources

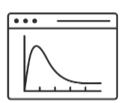
Please ask your questions in the chat!

Part 1 TI simulation tools overview


Tip: SPICE stands for "Simulation Program with Integrated Circuit Emphasis"

Time for some audience participation...

Introducing PSpice[®] for TI



PSpice for TI will help engineers speed time to market and reduce development costs, delivering:

- Full-featured simulation of entire systems.
 - Advanced capabilities, including Monte Carlo and worst-case analysis.
 - Synchronized library of >5,700 models and counting.
 - No design size limitations.
 - Easy transition to layout and prototype.
- Integrated design resources.
 - Quick access to TI product information.
 - No need to manually upload new TI models.

Why is TI partnering with Cadence?

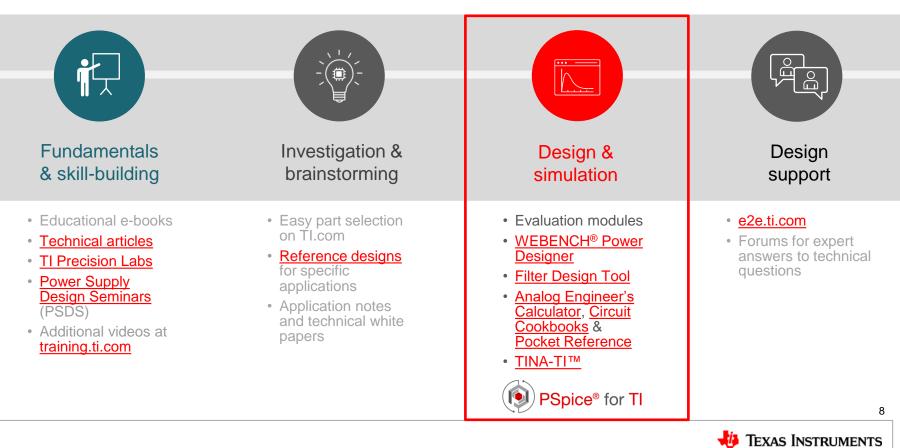
Growing demand

There is an increased need for simulation software to test new design concepts, accelerate product development and demonstrate regulatory compliance.

Source: ABI Research

Short design timelines

Today's design engineers must produce accurate designs on tight deadlines — in many cases, reducing the prototyping and evaluation phases of their designs.


Desire for more advanced simulation

Existing simulation tools in the market lack advanced analysis capabilities, model portability and flexibility, and easy library synchronization.

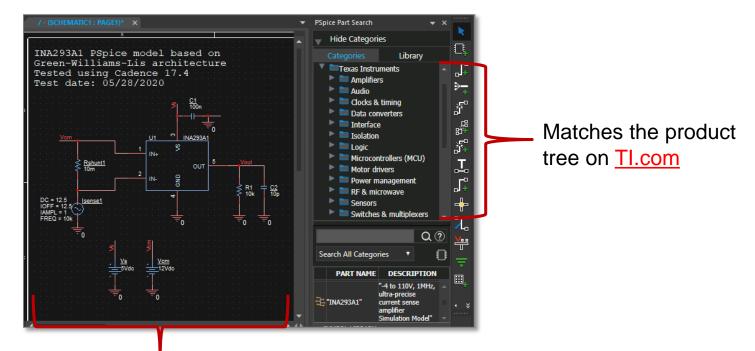
"Tools that are intuitive and include system-level simulation capabilities can cut the development time and speed time to market." – Kevin Anderson, Omdia

Is PSpice for TI replacing other TI tools?

PSpice for TI vs. TINA-TI

	PSpice for TI	TINA-TI	
Analysis / simulation			
AC, Noise, BIAS point, DC sweep, Transient, Fourier	Yes	Yes	
Variable sweeps	Temperature, component, parametric	Temperature, component	
Monte Carlo analysis	Yes	No	
Worst case analysis	Yes	No	
Libraries / components			
Internal libraries	~5700	~1300	
Automatic library updates	Yes	No	
Built-in modeling application	Yes	No	
Schematics			
Create hierarchical schematic	Yes	No	
Multipage schematics	Yes	No	

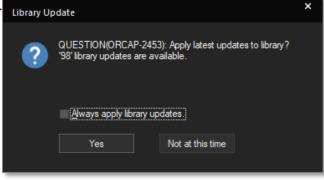
Part 2 PSpice for TI deep dive


Tip: PSpice for TI runs offline!

Software features and limitations FAQ

- Q. Does PSpice for TI work offline?
 - A. Yes, an internet connection is not required to run.
- Q. Is there a maximum number of nodes?
 - A. No, there are no design size limitations. You can also use multi-page schematics and hierarchical blocks.
- **Q.** Are there any other limits to be aware of?
 - **A.** Yes. The tool is designed primarily as a SPICE simulation environment for use with the built-in TI models. If third-party models are imported, then only three nodes can be probed simultaneously.

Built-in TI model library


Includes device-specific test benches To accelerate your development

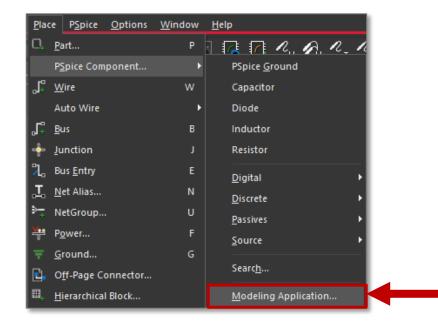
How do I update the TI model library?

- Updates to the model library are automatically detected and performed at software startup.
 - The user can choose not to update.
- The model library is installed locally on the user's hard drive. Models can be copied and imported into other tools if desired.
 - Location: C:\SPB_Data\cdssetup\pspTILibDir

← → ► ↑ C:\SPB_Data\cdssetup\pspTiLibDir ♂						
Name ^	Date modified	Туре	Size	^		
download	11/13/2020 8:18 AM	File folder				
ReferenceDesign	11/12/2020 4:33 PM	File folder		l i		
📑 74AC11000.lib	4/3/2020 11:01 PM	LIB File	8 KB			
🗋 74AC11000.libsig	7/18/2020 1:06 AM	LIBSIG File	1 KB			
74AC11000.OLB	4/3/2020 11:04 PM	OLB File	7 KB			
📑 74АС11004.ІіЬ	4/3/2020 11:01 PM	LIB File	7 KB			
🗋 74AC11004.libsig	7/18/2020 1:06 AM	LIBSIG File	1 KB			
24AC11004.OLB	4/3/2020 11:04 PM	OLB File	7 KB			

Are models editable?

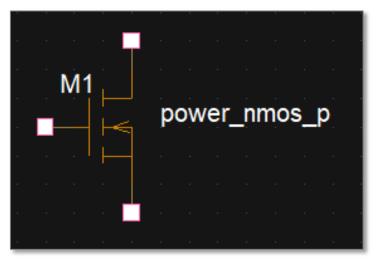
- Models are text files and may be edited with a text editor (I recommend <u>Notepad++</u>) from the library directory
 - Note: editing TI models breaks their signature, causing the tool to treat them as 3rd-party
- Some models have usereditable parameters. Editing these <u>does not</u> break signature.
- If you edit a model and save it in the same location, it will get over-written during the next library update.


37	.SUBCKT 74AC11000 Y A B VCC AGND
38	XU1 Y A B VCC AGND LOGIC_GATE_2PIN_OD_LVC_2i_NAND_PP_CMOS_74AC11000
39	.ENDS
40	.SUBCKT LOGIC_GATE_2PIN_OD_LVC_2i_NAND_PP_CMOS_74AC11000 OUT A B VCC GND
41	. PARAM VCC_ABS_MAX = 7
42	.PARAM VCC_MAX = 5.5
43	. PARAM RA = 220000000
44	.PARAM RB = 220000000
45	.PARAM CA = 3.5e-12
46	.PARAM CB = 3.5e-12
47	.PARAM ROEZ = 104.9999999999999
48	.PARAM COEZ = 3.5e-12
49	RA A GND {RA}
50	RB B GND {RB}
51	CA A GND {CA}
52	CB B GND {CB}
53	XUA NA A VCC GND LOGIC_INPUT_LVC_2i_NAND_PP_CMOS_74AC11000
54	XUB NB B VCC GND LOGIC_INPUT_LVC_2i_NAND_PP_CMOS_74AC11000
55	XUG NA NB NOUTG VCC GND LOGIC_FUNCTION_2_LVC_2i_NAND_PP_CMOS_74AC11000
56	XOUTPD NOUTG NOUTTPD VCC GND TPD_LVC_2i_NAND_PP_CMOS_74AC11000
57	XUOUT NOUTTPD NOUT_INT VCC GND LOGIC_PP_OUTPUT_LVC_21_NAND_PP_CMOS_74AC11000
58	XICC VCC GND NVIOUT LOGIC_ICC_LVC_2i_NAND_PP_CMOS_74AC11000
59	SICC VCC GND VCC GND SW1

Model file example

Modeling application

- Used to add customizable, parameterized components to your design:
 - Power MOSFETs
 - Power diodes
 - Passives with parasitics
 - Independent sources
 - Switches
 - Transformers
- Click Place → PSpice Component...
 → Modeling Application in the top menu bar
- Note: these components <u>do not</u> trigger the probe limit



Modeling application, cont.

- A simple UI opens for each type of component with editable fields
- Customize each parameter to your liking, then click *Place* to drop in schematic
 - Note: Device parameters can still be edited from their properties once in the schematic

N Channel MOSFET	P Char	nnel MOSFET	т
Device Specification			
Parameter	Value		
Reverse transfer capacitance (Crss)	58p	F	
Input capacitance (Ciss)	1170p		
Output capacitance (Coss)	136p	F	
Drain-to-source voltage (BVDss)	30.0		
Drain-to-source on-resistance (RdsON)	0.0059	Ohm	
Series gate resistance (Rg)	1.8	Ohm	
Gate-to-source threshold voltage (Vgs_th)	1.5	V	
Diode forward voltage (VSD)	0.8		
Drain-to-source leakage current (ldss)		Α	
Total gate charge (QG)	17.2n		
Voltage for specified total gate charge (V_QG)	10	С	
Forward trans-conductance (GFS)	44		

Power MOSFET window

Power NMOS in schematic

Additional included model libraries

• These standard PSpice libraries are also included:

Library	Description			
ABM	Analog behavioral models for various math functions			
ANALOG	Passives, dependent sources, switches, transmission lines			
BREAKOUT	Customizable versions of many device types			
DIG_MISC	Digital timing control, pull-up / pull-down resistors			
DIG_PRIM	Logic gates, flip-flops			
SOURCE	Independent voltage and current sources			
SPECIAL	Parameters, simulation control, library management, utilities			

Note: components from these libraries <u>do not</u> trigger the probe limit

Importing third-party or custom models

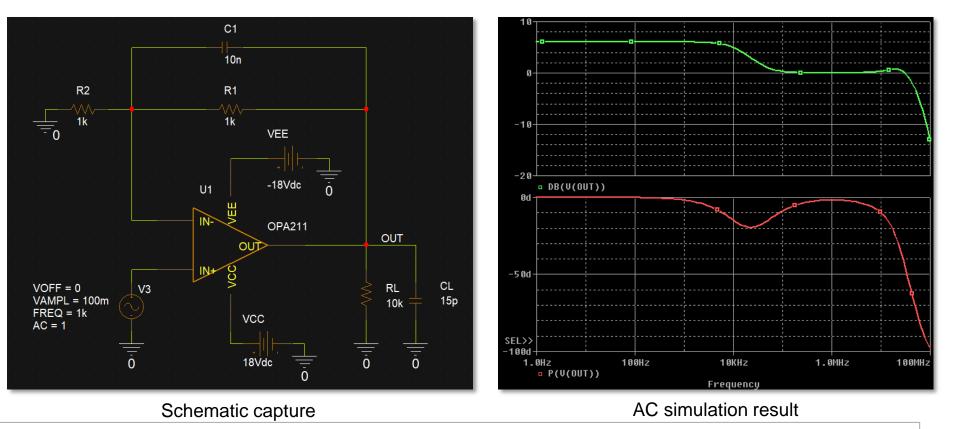
- With your *project* (.opj) selected, click *Tools* → *Generate Part*
- Browse to your model file in the new window, make your selections, and click OK
- The new model appears in your project's library

PSpice for TI-[/ - (SCHEMATIC1 : PAGE1)]	Generate Part ×	pspice demo.opj
	Netlist/source file:	Analog or Mixed A/D
File Design Edit View Tools Place PSpice	C:\Users\a0282827\Desktop\Custom Model.lib Browse Cancel	File 🖡 Hierarchy
🗋 🗁 💾 📻 🚬 🦉 Annotate	Netlist/source file type: PSpice Model Library +	Design Resources
Update Properties	Part name: FPGA Setup	الله المعالم ال
X 🗋 🖬 S ¢ 🚊	CUSTOM_MODEL	E Library
Test Bench		i د:\users\a0282827\desktop\custom model.olb
pspice demo.opj	Destination part Ibrary: C:\Users\a0282827\Desktop\Custom Model.DLB Browse	
Analog or Mixed A/D 🔳 Bill of Materials	Create new part O Update pins on existing part in library.	Library Cache
File 🙀 Hierarchy Export Properties	Pick symbols manually	Layout
	Sort pins Additional pins Secret in number of additional	Outputs
Design Resources Import Properties	<u>□ D</u> escending order <u>□</u> pins on part <u>□</u> pins or part <u>□</u> pins or part	PSpice Resources
■ ﷺ .\pspice demo.d		
	Retain alpha-numeric pin-numbers. Device is pin grid array type package. Indementation	
PAGE1 Split Part	Implementation type: Implementation name:	
🚊 🛅 Design Cacl 🛛 Customize	PSpice Model CUSTOM_MODEL	
E Library	Imglementation file:	
taning c:\users\a02 Compare Designs		

TEXAS INSTRUMENTS

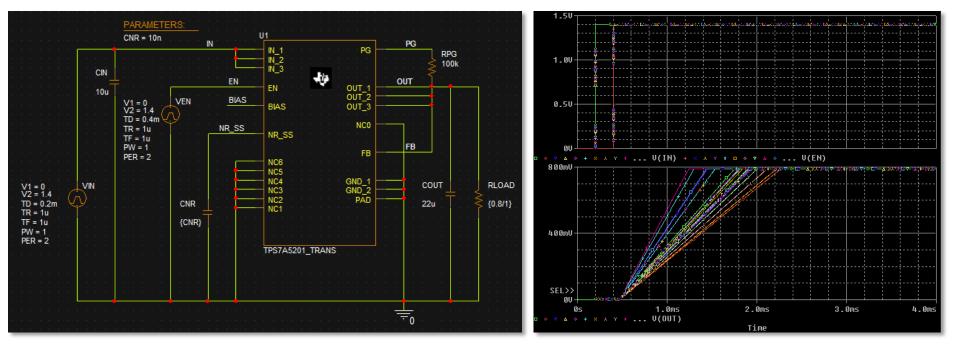
18

Types of models on Tl.com


Туре	Description
PSpice	Analog / mixed-signal model for use in PSpice-based simulators. Packaged in a way to be easy to import and use in PSpice / Cadence / OrCAD.
TINA-TI	Analog / mixed-signal model for use in PSpice-based simulators. Packaged in a way to be easy to import and use in TINA-TI.
HSPICE (uncommon)	Analog / mixed-signal model for use in HSPICE-based simulators. HSPICE is a branch of SPICE similar to PSpice, but models are not directly compatible.
SIMPLIS	Switch-mode power supply model for use in SIMPLIS .
IBIS	I/O Buffer Information Specification model, typically used for digital pin timing analysis. Compatible with a broad range of industry simulators.

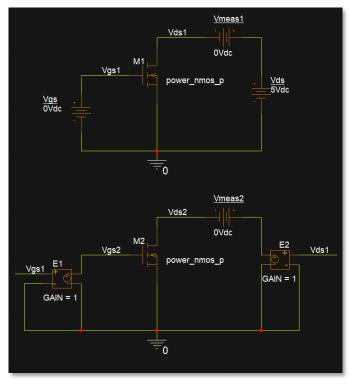
Part 3 Setup and simulation examples

Fip: Enabling AutoConverge in your sim profile can fix a broad range of convergence issues.

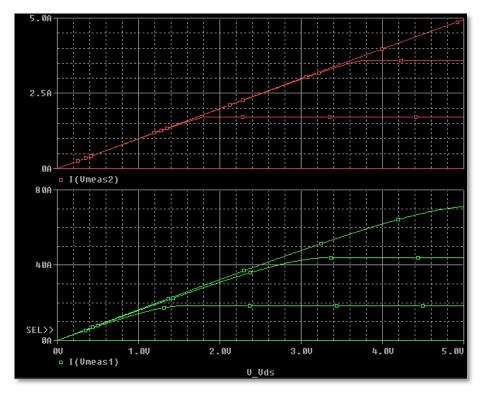

Operational amplifier example – OPA211

21

Power supply example – TPS7A52



Schematic capture


Transient simulation result

Modeling Application – Power MOSFET

Schematic capture

DC simulation result

Part 4 Additional Resources

Tip: Choose the "Last Plot" setting in your sim profile to preserve results display settings between runs.

Additional resources

Hands-on training manual

- Self-guided, step-by-step tutorial that walks the user through the entire tool workflow
 - Includes basic and more advanced content
 - Includes debugging and troubleshooting
- Available from the PSpice for TI start page:
 - Click Training Course

cādence°

Mixed-Signal Simulation with TI- PSpice 2020® Simulation Labs

This lab manual uses hands-on exercises for both new and moderately experienced users of Cadence® PSpice® to maximize the performance of their circuits.

Who will this benefit?

"Engineers and managers dealing with PCB designs, hardware, SPICE models, systems design, FPGA designs, RF circuits, analog/mixed or digital simulations, EMI /EMC analyses, or electronics in general."

Quickly Create Schematic for PSpice Simulation

Learn how to quickly design your circuit idea in the OrCAD workspace & get it ready for PSpice simulation to see how it will behave in real world

Import 3rd party models in your design

Take advantage of the ability to bring in any third-party vendor model from internet into PSpice

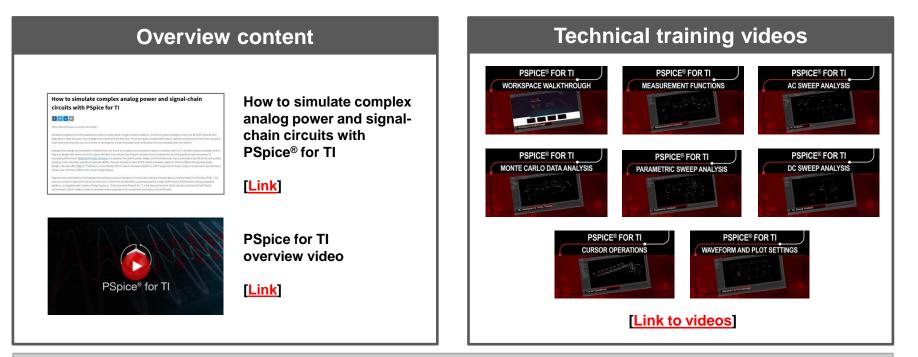
Learn Different Types of Analysis Techniques

Learn when to use and how to configure and run the following analyses:

- Transient, AC Sweep, DC Sweep Analysis
 Parametric & Performance Analysis
- Parametric & Performance Analysis
 Temperature
- Noise

Software Product Version 17.4 - 2019

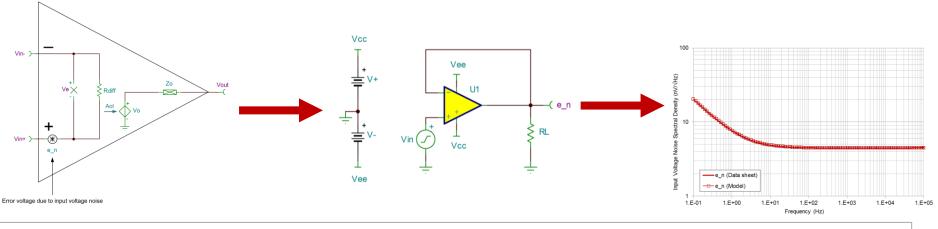
Quickly Solving Convergence errors


Learn how to resolve the most common Spice circuit convergence errors with PSpice and use Auto Convergence to converge a simulation automatically

cādence

1 Page

Additional resources, cont.


TI.com/pspice-for-ti

26

"Trust, but verify" SPICE models

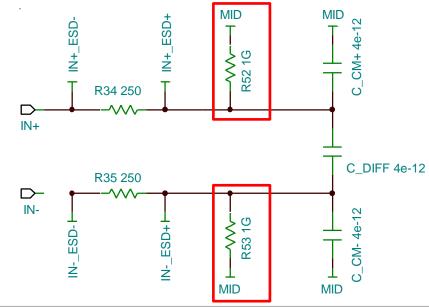
- Series of articles that covers verifying parameters of amplifier models:
- Part 1: Output impedance
- Part 2: <u>Small-signal bandwidth</u>
- Part 3: <u>Input-referred errors</u>
- Part 4: <u>Noise</u>

Direct support from TI

- For tool-related support: Simulation, hardware & system design tools forum
- For specific model or product support: post to that product's forum
 - i.e. For amplifier support, post to the <u>Amplifiers forum</u>

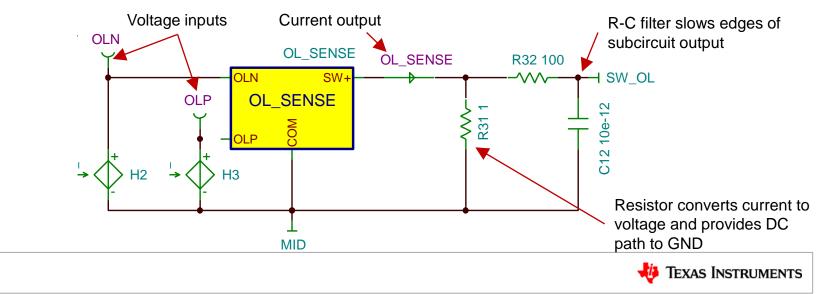
🔱 Texas Instruments		Search through millions of questions and answers					٩
E2E™ support foru	MS Forums	Technical articles	TI training	Getting started	IMDS	✓ More	
Amplifiers	Audio		Clock & timir	ng		Data converters	DLP [®] products
Logic	Microcontrollers		Motor driver	s		Power management	Processors
Site support	Switches & multiple	exers	Tools			Wireless connectivity	Archived forums
					,		

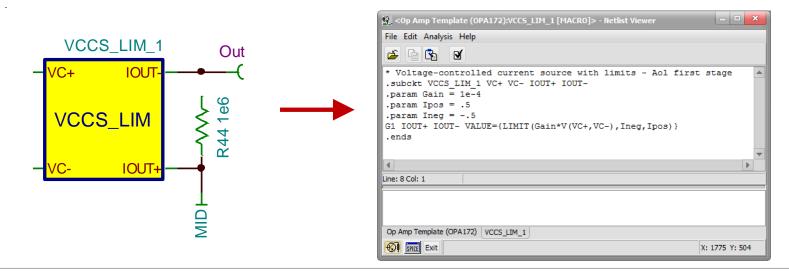
Note: these forums are all supported by TI applications engineers who are graded on responsiveness and quality of support. You should get an initial reply in 24h.


SPICE tips – analysis parameters

Option	Default	Relaxed	Effect	
AutoConverge	Off	On	Relaxes multiple parameters if needed to enable convergence	
ABSTOL	1e-12	1e-10	Sets the absolute tolerance of nodal currents between DC iterations	
RELTOL	1e-3	3e-3	Sets the relative tolerance of the nodal voltages at each DC iteration compared to the first	
GMIN	1e-12	1e-10	Adds conductance parallel to every p-n junction	
CSHUNT	0	1e-15	Adds capacitance from every node to ground	

SPICE tips – DC path to GND

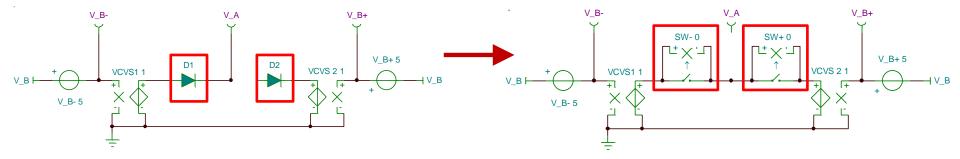

- Ensure DC path to ground at every node
 - Can force a path with large resistors (1T, etc.) that don't affect electrical performance
 - Try to use the smallest value possible


SPICE tips – linear circuits

- Design functional blocks with as linear behavior as possible
 - Sharp transitions or discontinuities cause issues with convergence checks
 - Use R-C filter networks to reduce bandwidth of subcircuits for smooth transitions
 - Use voltage inputs and current outputs wherever possible

SPICE tips – bounded matrix

- Keep matrix equations as tightly bounded as possible
 - Place limits on gain and buffer stages
 - Use only as much gain as required
 - Scale resistances to keep node voltages and currents in similar ranges



SPICE tips – simplified components

- Replace complex components with simple approximations if exact component modeling isn't necessary
 - **Example:** ideal diode \rightarrow voltage-controlled switch

Diode equation: $i_D = I_S(e^{\frac{qV_D}{kT}} - 1)$

SLYP725

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated