
 

 

 
 
 
 

  

Module 7 
Lab 7: Finite State Machine 
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7.0 Objectives 
 
The purpose of this lab is to develop and test a Finite State Machine (FSM) that 
could be used in a robot to follow a line. 
 

1. You will learn how to use structures and pointers in C. 
2. You will understand how to use FSMs to solve problems. 
3. You will implement a simple line-following algorithm with an FSM. 

 

Good to Know: Even though you will implement this lab using switches for 

inputs and LEDs for output, the FSM design process can be used for robot 
controllers. The solution to this lab will allow a robot to follow a line (black mask 
tape). 

 
7.1 Getting Started  
 
7.1.1 Software Starter Projects  

 
Look at these three projects: 
PointerTrafficFSM (example use of a finite state machine) 
LineFollowFSM (simple FSM that implements line following) and  
Lab07_FSM (starter project for this lab) 

 
7.1.2 Student Resources (in datasheets directory-Links)  

 
Meet the MSP432 LaunchPad (SLAU596) 
MSP432 LaunchPad User’s Guide (SLAU597) 

 
7.1.3 Reading Materials  

 
Volume 1 Sections 6.1, 6.2, 6.4 and 6.5  
Embedded Systems: Introduction to the MSP432 Microcontroller", 
or 
Volume 2 Section 3.5 
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller", 

 

 

 

 

 

 

 

 

 

 

 

7.1.4 Components needed for this lab 

 

Quantity Description Manufacturer Mfg P/N 

1 
MSP-
EXP432P401R 
LaunchPad 

TI MSP-EXP432P401R 

 

 

7.1.5   Lab equipment needed 

 
Oscilloscope (one channel at least 10 kHz sampling) 
Logic Analyzer (4 channels at least 10 kHz sampling 

 
7.2 System Design Requirements 
 
The Lab07_FSM starter project implements the three-state FSM shown in Figure 

1, which we could use to implement a line-following robot. The 500 is the time to 
wait in each state in ms. On the real robot, we set these delay times to be much 
shorter, depending on how fast the mechanical robot responds to actuator 
commands. However, in this lab, the 500 ms is chosen to make it easy to see the 
output with our eyes. 
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Figure 1. Moore FSM state graph to implement line following. The time in each 
state is shown in 1ms units.  
 
The robot has two sensors that detect the line, see Figure 2. If the robot is 
properly positioned on the line, both sensors will read 1. If the robot is a little off 
to the left or right, one sensor reads 1, and the other sensor reads 0.  If the robot 
is completely off the line, both sensors will read 0. 
 
The robot has two motors, also shown in Figure 2. The two motors and a passive 
caster allow the robot to operate in a differential drive fashion. If the software 
outputs high to both motors, the robot moves forward in a straight line. If the 
software outputs high to just one motor, it will turn. If the software outputs low to 
both motors, it will stop. 
 
 

 
Figure 2. Robot with two line sensors and two wheel motors. 

 
 
You are asked to extend this FSM, adding additional states, to implement the 
following behaviors. 
 
1) The FSM in Figure 1 gets confused (has a bug) if the robot is off little bit to the 
left (input is 01, and the machine is oscillating between the Left and Center 
states) and then goes completely off the line to the left (input is 00). In this 
machine, if it happens to be in the Center state when it goes off the line, it will 
incorrectly move to the Right state even though the robot went off to the left. You 
will solve this problem by implementing two left states (so it oscillates between 

the two left states when a little left). For symmetry, you will implement two right 
states as well. Figure 3 shows a partial solution. If the input is 11, then the output 
should remain 11. If the input goes to 01 (it is a little left), then the output should 
toggle 1,0↔1,1 causing a slight right turn. Similarly, if the input goes to 10 (it is a 
little right), then the output should toggle 0,1↔1,1 causing a slight left turn. 
 

 
Figure 3. Expanded FSM state graph. The time in each state is shown in 1ms 
units. 

 
2) The second behavior you need to implement is what happens when the robot 
goes completely off the line. If it goes off the line to the right (input=0,0 while in 
Right1 or Right2), it should make a hard left turn (output=0,1) for 5 seconds, then 
go straight (output=1,1) for 5 seconds. If it is still off the line at this point it should 
stop (output=0,0). If it finds the line, resume line following. It should take three 
more states to implement this behavior.  
 
Similarly, if the robot goes off the line to the left (input=0,0 while in Left1 or Left2), 
it should make a hard right turn (output=1,0) for 5 seconds, then go straight 
(output=1,1) for 5 seconds. If it is still off the line at this point it should stop 
(output=0,0). If it finds the line, it should resume line following. It should take 
three more states to implement this behavior.  
 
The solution should have about 11 states (5 states from Figure 3, plus 3 for lost 
to the right, plus 3 states for lost to the left). As long as you have 9 or more 
states, feel free to make assumptions or change the exact behavior of the 
machine. The objective of the lab is to describe the complete behavior of a 
system with the state transition graph, and then to implement that behavior with a 
very simple FSM controller. The FSM controller should have NO conditional 
branch statements.  
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7.3 Experiment set-up  
 
You will implement this lab using just the MSP432 Launch Pad, without need for 
additional circuits, see Figure 4. The Launch Pad driver software converts the 
switch input to positive logic so “switch pressed” is seen as a 1, see Table 1.  
The LED outputs are in positive logic, see Table 2. 
 
 

 
 

Figure 4. P1.4 is the left sensor, P1.1 is the right sensor, P2.1 is the left motor 
P2.0 is the right motor.  

The LaunchPad_Input function (defined in LaunchPad.c) returns the switch 

position in positive logic, so pushing both switches creates an input condition of 
1,1. The LaunchPad_Output function (defined in LaunchPad.c) sends data to 
the 3-bit color LED. 

 

SW2  SW1 LaunchPad_Input Meaning 

pressed pressed 1,1 = 0x03 On line 

pressed not 1,0 = 0x02 Right of line 

not pressed 0,1 = 0x01 Left of line 

not not 0,0 = 0x00 Off the line 

Table 1. Switches simulate line sensors. 

P2.1  P2.0 LaunchPad_Output LED Meaning 

off off 0,0 = 0x00 black Stop 

off on 0,1 = 0x01 red Turn left 

on off 1,0 = 0x02 green Turn right 

on on 1,1 = 0x03 yellow Straight 

Table 2. LEDs simulate robot motor 

7.4 System Development Plan 
 
7.4.1 Line Follow FSM 

The first step is to compile, download and run the LineFollowFSM example 

shown below. Using the debugger, single step through the controller (step over 
the functions) and observe Input, Output, and the pointer Spt.  Notice how the 

structure is defined and how the pointer is used to access data in the structure. 
Using the debugger, determine where in memory is the FSM located (is it in RAM 
or ROM)?  

  

MSP432 P1.4

P1.1

SW1 SW2P2.0

P2.1

P2.2

RedBlue Green

EL-19-337

JP4
P1.2/RxD
P1.3/TxD

P3.4/CTS

Serial
P3.1/RTS

P1.0

JP9

JP10

JP11

JP8

LTST-C190CKT
1.65V3.5mA

470 

26 24 110 
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struct State { 
  uint32_t out;                // 2-bit output 

  uint32_t delay;              // time to delay in 1ms 

  const struct State *next[4]; // Next if input is 0-3 

}; 

typedef const struct State State_t; 

 

#define Center &fsm[0] 

#define Left   &fsm[1] 

#define Right  &fsm[2] 

StateType fsm[3]={ 

  {0x03, 500, { Right, Left,   Right,  Center }},  

  {0x02, 500, { Left,  Center, Right,  Center }},  

  {0x01, 500, { Right, Left,   Center, Center }}    

}; 

State_t *Spt;  // pointer to the current state 

 

uint32_t Input; 

uint32_t Output; 

 

int main(void){ uint32_t heart=0; 

  Clock_Init48MHz(); 

  LaunchPad_Init(); 

  TExaS_Init(LOGICANALYZER);  // optional 

  Spt = Center; 

  while(1){ 

    Output = Spt->out;            // set output from FSM 

    LaunchPad_Output(Output);     // output to motors 

    TExaS_Set(Input<<2|Output);   // optional 

    Clock_Delay1ms(Spt->delay);   // wait 

    Input = LaunchPad_Input();    // read sensors 

    Spt = Spt->next[Input];       // next  

    heart = heart^1; 

    LaunchPad_LED(heart);         // optional 

  } 

} 

In this program, this FSM performs the 4-step sequence over and over:  
  1) Output depends on State (LaunchPad LED) 
  2) Wait depends on State 
  3) Input (LaunchPad buttons) 
  4) Next depends on (Input, State) 

Run the program and observe the static behavior.  

i) Fill in Table 3 describing what this machine does if the input remains 
constant.  

SW2  SW1 Input Meaning Output behavior 

pressed pressed 1,1 On line  

pressed not 1,0 Right of line  

not pressed 0,1 Left of line  

Table 3. Static response table of the simple FSM. 

When just one switch is pressed, it represents the condition where the robot is a 
little off the line. In this situation, one wheel is active and other wheel oscillates 
on and off. This oscillation causes this wheel to spin, but at a slower rate. If P2.1 
is high, the left wheel spins at 100%. The duty cycle of a digital wave is defined 

as the percentage of the time the signal is high. If the duty cycle on P2.0 is 
n=(high/ (high+low)), then the right motor spins at n*100%, and the robot will 
gently turn. Use an oscilloscope or logic analyzer to measure the oscillation rate 
and duty cycle on Port P2.0. See Figure 5. 
 
 

   
Figure 5. Logic analyzer trace showing the oscillation on the right wheel  
Channel 0 is 1 Hz and has a 50% duty cycle.  
 

Note: Channel 3-2 are Input =1 (left sensor=0, right sensor =1), showing the 
condition a little bit off to left.  Channels 1-0 are the Output (left motor=1, right 
motor oscillating), showing a gentle right turn. 
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Lastly, you will observe the bug in this FSM.  
  1) Start with both switches pressed (on the line);  
  2) Release SW2 (the robot is a little off to the left); then  
  3) Release SW1. 
 
At this point you are completely off the line to the left. Repeat this 1-2-3 step 
sequence multiple times, and you will find sometimes it correctly ends up in the 
left state, but sometimes it incorrectly ends up in the right state. 
 

7.4.2 Design an improved FSM 

 
The second step is to design an FSM as described in the requirements section 
Figure 3.0. As long as your machine has 9 or more states, feel free to adjust 
exactly how the machine operates. In this lab section you will: 

i) Draw the state transition graph  
ii) Create a state transition table, and enter the C code for the data 

structure. 
All three should be exactly the same information (no more no less). 
This equivalency is called one-to-one and it is an important feature of 

good FSM design. If the graph is one-to-one with the data structure in 
C, then we can be confident the system operates as described by the 
graph. 

 
iii) You will test your system using the same 1-2-3 step sequence shown 

at the end of section 7.4.1. However, as long as you wait at least 500 
ms with SW2 released before you release SW1, then you should 
always end up in one of the left states. 

 
Perform this test at least ten times to verify it works correctly. Similarly for the 
right side states,  
  1) Start with both switches pressed (on the line);  
  2) Release SW1 (the robot is a little off to the right); then  
  3) Release SW2 
 
At this point you are completely off the line to the right. Repeat this 1-2-3 step ten 
multiple times and you should always end up in one of the right states. 
 
Use the logic analyzer to test the static behavior of the system. Assuming the 
input remains constant fill in Table 4.There are two off the line conditions: off to 
left and off to right.  
 
 
 

SW2  SW1 Input Meaning Output behavior 

pressed pressed 1,1 On line  

pressed not 1,0 Right of line  

not pressed 0,1 Left of line  

not not 0,0 Off the line  

not not 0,0 Off the line  

Table 4. Static response table of the Lab FSM.  

7.5 Troubleshooting  

Can’t program LaunchPad:  

• Check the cables, jumpers on the LaunchPad development board. 
• Check the Windows driver to see if the board is recognized by the 

operating system.  
• Try another LaunchPad on this computer.  
• Try this LaunchPad on another computer 

Hard fault:  

• Verify Spt always points an entry in the FSM. 

Time delays are too slow or too fast:  

• Verify the computer is running at 48 MHz. 
• Go back and make sure Lab in Module 6GPIO still works 
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7.6 Things to think about    

In this section, we list thought questions to consider after completing this lab. 
These questions are meant to test your understanding of the concepts in this lab. 

• Can there be two states with the same output? Why? 
• How does the FSM create the 50% duty cycle output wave? What would 

you change to make it 75% (even more gentle turn)? What would you 
change to make it 25% (sharper turn)? 

• It is important that the state transition graph and the data structure in C 
are one-to-one. What does one-to-one mean and explain how is it true? 

• This lab uses I/O abstraction in the four functions that begin with 
LaunchPad_. What information is in the header file LaunchPad.h? 

What is in the code file LaunchPad.c? What benefits does this 
abstraction provide? 

• This FSM had 2 inputs. What would change if there were 3 inputs?  
4 inputs? 

• This FSM had 2 outputs. What would change if there were 3 outputs?  
4 outputs? 

• How is the FSM tested? 

7.7 Additional challenges  

In this section, we list additional activities you could do to further explore the 
concepts of this module. You could extend the system or propose something 
completely different. For example, 

• Replace the switch input with the actual line sensor interfaced in Lab 6. 
If you use the line sensor, you can expand the input from 2 bits to 4 bits. 

• Use the FSM method to solve similar problems like the traffic light 
controller or a stepper motor controller 

• This FSM used a pointer to define the current state. You could 
implement the FSM using an index to access the parameters of the 
state. E.g., Output = fsm[index].out; 

7.8 Which modules are next? 

The FSM is a powerful design tool for solving complex systems. Effective 
solutions to many of the possible robot challenges will include FSMs.  

Module 8)  Interface actual switches and LEDs to the microcontroller.  
 This will allow for more inputs and outputs increasing the  
 complexity of the system. 
Module 9)  Develop a simple PWM output to adjust duty cycles  
Module 10)  Develop debugging techniques to prove behavior for  
 complex systems 
Module 12)  Connect the line sensor and motors to the robot, and run the  
 solution to this lab on the actual robot. 

 
7.9 Things you should have learned 

In this section, we review the important concepts you should have learned in  
this module: 

• Use struct to organize data  
• Access data using a pointer 
• Use multiple files in a project to implement abstraction  
• Design a simple FSM drawing a state transition graph  
• Convert a state transition graph into C data structure  
• Use a logic analyzer to measure timing between inputs/outputs 
• Debug the FSM and verify its proper behavior 
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